HENSEL'S LEMMA AND SQUARES MOD N

TIM SMITS

For a prime p and and integer a co-prime to p, the value of the Legendre symbol $\left(\frac{a}{p}\right)$ detects whether or not a is a square mod p or not. For an odd integer $n = p_1^{e_1} \cdots p_k^{e_k}$, the Jacobi symbol $\left(\frac{a}{n}\right)$ generalizes the Legendre symbol, but the value of $\left(\frac{a}{n}\right)$ does not detect whether or not a is a square mod n or not: $\left(\frac{2}{15}\right) = 1$, yet 2 is not a square mod 15. How then, can one detect whether or not a is square mod n?

The guiding philosophy of number theory is the idea that information mod n is "the same" as information mod $p_i^{e_i}$, because one should be able to "glue" these pieces of information together using the Chinese remainder theorem. However, there is a second, equally as important philosophy: information mod p^e should come from "lifting" information mod p. One of the many instances of this philosophy is made precise in *Hensel's lemma*:

Theorem 0.1 (Hensel's lemma). Let f(x) be a polynomial with integer coefficients, let p be a prime. Suppose that $f(c) \equiv 0 \mod p$ for some c. If $f'(c) \not\equiv 0 \mod p$, then for any $k \geq 1$ there exists an integer c_k such that $c_k \equiv c \mod p$ and $f(c_k) \equiv 0 \mod p^k$.

The condition $f'(c) \not\equiv 0 \mod p$ means that c is not a repeated root of the polynomial $f(x) \mod p$. In this case, Hensel's lemma says we can "lift" the root to a root modulo any larger prime power. The proof of Hensel's lemma will rely on little more than basic calculus. Recall that for any $a \in \mathbb{R}$, the *n*-th Taylor polynomial of f(x) centered at a is given by $T_n(x) = \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x-a)^k$. Since f(x) is a polynomial of degree n, the *n*-th degree Taylor polynomial is actually equal to f(x), so we have $f(x) = \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x-a)^k$. Replacing x with x + h and expanding around a = x, we may alternatively write this as $f(x+h) = \sum_{k=0}^n \frac{f^{(k)}(x)}{k!} h^k$.

Proof of Theorem 0.1. Our proof is by induction. For k = 1, the theorem is true by assumption. Now suppose that for some k there is an integer c_k with $c_k \equiv c \mod p$ and $f(c_k) \equiv 0 \mod p^k$. We will construct a solution to the congruence mod p^{k+1} . Specifically, consider an integer of the form $c_k + tp^k$ for some integer t. We would like to show that we can choose t such that $f(c_k + tp^k) \equiv 0 \mod p^{k+1}$, as we may then take $c_{k+1} = c_k + tp^k$, and certainly we will have $c_{k+1} \equiv c_k \equiv c \mod p$ as desired. Using a Taylor expansion, we may write $f(c_k + tp^k) = f(c_k) + f'(c_k)tp^k + \frac{f''(c_k)}{2}t^2p^{2k} + \ldots \equiv f(c_k) + f'(c_k)tp^k \mod p^{k+1}$. Since $f(c_k) \equiv 0 \mod p^k$, write $f(c_k) = p^k \ell$ for some $\ell \in \mathbb{Z}$. Then $f(c_k) + f'(c_k)tp^k = (\ell + f'(c_k)t)p^k$. If we can choose t to make the term in parenthesis divisible by p, we're done. Since $c_k \equiv c \mod p$, we have $f'(c_k) \equiv f'(c) \not\equiv 0 \mod p$, so the equation $\ell + tf'(c_k) \equiv 0 \mod p$ has solution $t \equiv -\ell [f'(c_k)]^{-1} \mod p$. Therefore, we may let t be any representative of this congruence class, and by construction this choice of t works. By induction, we're therefore done.

Corollary 0.2. Let p be an odd prime. An integer a co-prime to p is a square mod p if and only if a is a square mod p^k for all $k \ge 1$.

TIM SMITS

Proof. First, suppose that $a \equiv c_k^2 \mod p^k$ for $k \geq 1$. Then clearly $a \equiv c_k^2 \mod p$, so a is a square mod p. Conversely, suppose that $a \equiv c^2 \mod p$. With $f(x) = x^2 - a$, this means $f(c) \equiv 0 \mod p$. Since $a \not\equiv 0 \mod p$ we have $c \not\equiv 0 \mod p$, and because p is odd we have $f'(c) = 2c \not\equiv 0 \mod p$. By Hensel's lemma, for any $k \geq 1$ there is c_k such that $f(c_k) \equiv 0 \mod p^k$, i.e. $a \equiv c_k^2 \mod p^k$.

The proof of Hensel's lemma is constructive, so it actually tells us how to find the square roots of $a \mod p^k$!

Example 0.3. We have $2 \equiv 3^2 \mod 7$, so Hensel's lemma tells us that 2 is a square mod 49. What are the solutions to $x^2 \equiv 2 \mod 49$? Hensel's lemma says we want to take 3+7t where $t \equiv -\frac{f(3)}{7}[f'(3)]^{-1} \mod 7$. We have f(3) = 7, f'(3) = 6, and $6^{-1} \equiv 6 \mod 7$. Therefore, any choice of t with $t \equiv -6 \equiv 1 \mod 7$ will work. Thus, $3+7 \cdot 1 = 10$ satisfies $10^2 \equiv 2 \mod 49$. If $c^2 \equiv 2 \mod 49$, this says $(x/c)^2 \equiv 1 \mod 49$, and by problem 6, this means $x/c \equiv \pm 1 \mod 49$ so $x \equiv \pm c \mod 49$. This says the solutions to $x^2 \equiv 2 \mod 49$ are $x \equiv \pm 10 \mod 49$.

Hensel's lemma can't tell us anything about squares mod 2^k , because the derivative condition is never met. However, this case is fairly easy to deal with.

Proposition 1. Let a be an odd integer. Then $a \equiv 1 \mod 8$ if and only if a is a square mod 2^k for $k \geq 3$.

Proof. Suppose that $a \equiv c_k^2 \mod 2^k$ for $k \geq 3$. Then clearly $a \equiv c_k^2 \mod 8$, and the only non-zero square mod 8 is 1, so $a \equiv 1 \mod 8$. Conversely, suppose that $a \equiv 1 \mod 8$. We'll inductively construct c_k such that $a \equiv c_k^2 \mod 2^k$ for $k \geq 3$. By assumption, $c_3 = 1$. Now suppose that c_k exists for some $k \geq 3$. Then $a \equiv c_k^2 \mod 2^k$ says $a = c_k^2 + 2^k \ell$ for some ℓ . Define $c_{k+1} = c_k + 2^{k-1}\ell$, and note that $c_{k+1}^2 = (c_k + 2^{k-1}\ell)^2 = c_k^2 + 2^k \ell + 2^{2k-2}\ell^2 = a + 2^{2k-2}\ell^2$. Since $k \geq 3$, we have $2k-2 \geq k+1$, so $c_{k+1}^2 \equiv a \mod 2^{k+1}$ as desired. Therefore by induction, we have shown that a is a square mod 2^k for any $k \geq 3$.

Combining these two results gives us a criterion for checking when an integer a is a quadratic residue mod n.

Theorem 0.4. Let $n = 2^e p_1^{e_1} \cdots p_k^{e_k}$ be a factorization into primes with $e \ge 0$ and let a be an integer with gcd(a, n) = 1.

- (i) If e = 0, 1, then a is a square mod n if and only if a is a square mod p_i for all i.
- (ii) If e = 2 then a is a square mod n if and only if $a \equiv 1 \mod 4$ and a is a square mod p_i for all i.
- (iii) If $e \ge 3$, then a is a square mod n if and only if $a \equiv 1 \mod 8$ and a is a square mod p_i for all i.

Proof. The proof of all three statements will be largely the same: if $a \equiv c^2 \mod n$, then clearly $a \equiv c^2 \mod 2^e$ and $a \equiv c^2 \mod p_i^{e_i}$ for all i, so $a \equiv c^2 \mod p_i$ for all i. If e = 2, then the only non-zero square mod 4 is 1, so $a \equiv 1 \mod 4$. If $e \geq 3$, we have $a \equiv 1 \mod 8$ by the above proposition. Now suppose that a is a square mod p_i for all i. By Hensel's lemma, we saw earlier that a is a square mod $p_i^{e_i}$ for all i. If e = 1 then $a \equiv 1 \mod 2$. If e = 2, then $a \equiv 1 \mod 4$ means that a is a square mod 4, and if $e \geq 3$ the above proposition says that $a \equiv 1 \mod 8$ means a is a square mod 2^e . Let $f(x) = x^2 - a$. Since $f(x) \equiv 0 \mod 2^e$ is solvable and $f(x) \equiv 0 \mod p_i^{e_i}$ is solvable for all i, by problem 2 we have that $f(x) \equiv 0 \mod 2^e p_1^{e_1} \cdots p_k^{e_k}$ is solvable, i.e. a is a square mod n as desired. The above theorem tell us the Jacobi symbol still retains some information about whether a is a square mod n or not.

Corollary 0.5. Let n be an odd integer and a an integer with gcd(a, n) = 1. Then if $\left(\frac{a}{n}\right) = -1$, then a is not a square mod n. Equivalently, if a is a square mod n, then $\left(\frac{a}{n}\right) = 1$. Proof. Write $n = p_1^{e_1} \cdots p_k^{e_k}$. By definition, we have $\left(\frac{a}{n}\right) = \left(\frac{a}{p_1}\right)^{e_1} \cdots \left(\frac{a}{p_k}\right)^{e_k}$. Saying $\left(\frac{a}{n}\right) = -1$ means that $\left(\frac{a}{p_i}\right) = -1$ for some *i*, i.e. *a* is not a square mod *p_i* for some *i*. By the above theorem, this means *a* is not a square mod *n*. The second statement follows by taking the contrapositive of the first.

As an application of the above theorem, we give the following example of a so *local-global* principle.

Theorem 0.6. Let n be an integer. Then n is a square in \mathbb{Z} if and only if n is a square mod p for all primes p.

Proof. If $n = k^2$ then clearly $n \equiv k^2 \mod p$ for any prime p. For the more interesting direction, suppose that n is a square mod p for all prime p but n is not a square in \mathbb{Z} . Then we can write $n = a^2 p_1 \cdots p_k$ for some primes p_i . We will construct an integer N with $\left(\frac{n}{N}\right) = -1$, so that by the above corollary, n is not a square mod N, so that n is not a square mod some prime p dividing N. This will give us a contradiction. To do so, first note that at least one of the primes p_i must be odd. Otherwise, $n = 2a^2$, so $n \equiv 2 \mod 3$ which contradicts that n is a square mod 3. Let p_1, \ldots, p_ℓ be the odd primes among p_1, \ldots, p_k . Consider the system of congruences

$$\begin{cases} x \equiv 1 \mod 8 \\ x \equiv b \mod p_1 \\ x \equiv 1 \mod p_2 \\ \vdots \\ x \equiv 1 \mod p_\ell \end{cases}$$

where b is any non-square mod p_1 . By the Chinese remainder theorem, there is an integer N solving this system. By taking the power of 2 out of the squared part of n if necessary, write $n = 2^k a'^2 p_1 \cdots p_\ell$ for some a' and some k. Then $\left(\frac{n}{N}\right) = \left(\frac{2^k a'^2 p_1 \cdots p_\ell}{N}\right) = \left(\frac{2}{N}\right)^k \left(\frac{p_1}{N}\right) \cdots \left(\frac{p_\ell}{N}\right) = \left(\frac{N}{p_1}\right) \cdots \left(\frac{N}{p_\ell}\right) = -1$ by Jacobi reciprocity and the fact that $\left(\frac{2}{N}\right) = 1$ because $N \equiv 1 \mod 8$. We've reached our desired contradiction, so n must be a square in \mathbb{Z} as desired.