HENSEL’S LEMMA AND SQUARES MOD N
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For a prime p and and integer a co-prime to p, the value of the Legendre symbol (%)
detects whether or not @ is a square mod p or not. For an odd integer n = p{* -- - p;*, the
Jacobi symbol ( ) generalizes the Legendre symbol, but the value of ( ) does not detect
whether or not a is a square mod n or not: (1) = 1, yet 2 is not a square mod 15. How

15
then, can one detect whether or not a is square mod n?

The guiding philosophy of number theory is the idea that information mod n is “the same”
as information mod p5*, because one should be able to “glue” these pieces of information
together using the Chinese remainder theorem. However, there is a second, equally as
important philosophy: information mod p® should come from “lifting” information mod
p. One of the many instances of this philosophy is made precise in Hensel’s lemma:

Theorem 0.1 (Hensel’s lemma). Let f(x) be a polynomial with integer coefficients, let p be
a prime. Suppose that f(c) = 0 mod p for some c. If f'(c¢) #Z 0 mod p, then for any k > 1
there exists an integer ¢y such that ¢y = ¢ mod p and f(cx) = 0 mod "

The condition f’(¢) Z 0 mod p means that ¢ is not a repeated root of the polynomial
f(z) mod p. In this case, Hensel’s lemma says we can “lift” the root to a root modulo
any larger prime power. The proof of Hensel’s lemma will rely on little more than basic
calculus. Recall that for any a € R, the n-th Taylor polynomial of f(x) centered at a is

given by T,,(z) = > 1_, f(kk),(a)( — a)k. Since f(x) is a polynomial of degree n, the n-th

degree Taylor polynomial is actually equal to f(x), so we have f(z) =>"}_, ! (2, (x —a)*.
Replacing x with x + h and expanding around a = x, we may alternatlvely write this as

fle+h) =3, f(kiix(x) ht.

Proof of Theorem (.1. Our proof is by induction. For & = 1, the theorem is true by as-
sumption. Now suppose that for some £k there is an integer ¢, with ¢, = ¢ mod p and
f(ck) = 0mod p*. We will construct a solution to the congruence mod p**!. Specifically,
consider an integer of the form ¢ + tp* for some integer t. We would like to show that we
can choose t such that f(c, + tp*) = 0 mod p**!, as we may then take cpy1 = ¢ + tp*, and
certainly we will have cxy1 = ¢ = ¢ mod p as desired. Using a Taylor expansion, we may
write f(c, +tp*) = f(c) + f'(cr)tp® + Wﬁp% + ... = f(er) + f'(cr)tp® mod p**+i. Since
f(ck) = 0mod p*, write f(cy) = p*¢ for some ¢ € Z. Then f(cp)+ f'(ci)tp® = (€+ f'(ci)t)p*
If we can choose t to make the term in parenthesis divisble by p, we’re done. Since
¢y = cmod p, we have f'(¢;) = f'(¢) Z 0mod p, so the equation ¢ + tf'(c;) = 0 mod p

has solution ¢t = —/([f’(c)]™* mod p. Therefore, we may let ¢ be any representative of this
congruence class, and by construction this choice of t works. By induction, we're therefore
done. U

Corollary 0.2. Let p be an odd prime. An integer a co-prime to p is a square mod p if and

only if a is a square mod p* for all k > 1.
1
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Proof. First, suppose that a = ¢2 mod p* for k > 1. Then clearly a = ¢} mod p, so a
is a square mod p. Conversely, suppose that a = ¢ mod p. With f(x) = 2? — a, this
means f(c) = 0 mod p. Since a Z 0 mod p we have ¢ Z 0 mod p, and because p is odd
we have f'(¢c) = 2¢ # 0 mod p. By Hensel’s lemma, for any & > 1 there is ¢, such that
f(cx) = 0mod p*, i.e. a = c2 mod p*. O

The proof of Hensel’s lemma is constructive, so it actually tells us how to find the square
roots of a mod p¥!

Example 0.3. We have 2 = 3% mod 7, so Hensel’s lemma tells us that 2 is a square mod 49.
What are the solutions to 22 = 2 mod 497 Hensel’s lemma says we want to take 3+ 7t where
t= —@[f’(?))]_l mod 7. We have f(3) =7, f/(3) =6, and 6! = 6 mod 7. Therefore, any
choice of t with t = —6 = 1 mod 7 will work. Thus, 3+ 7-1 = 10 satisfies 10> = 2 mod 49. If
¢* = 2 mod 49, this says (z/c)*> = 1 mod 49, and by problem 6 , this means x/c = +1 mod 49
so x = £c mod 49. This says the solutions to 22 = 2 mod 49 are x = 410 mod 49.

Hensel’s lemma can’t tell us anything about squares mod 2*, because the derivative con-
dition is never met. However, this case is fairly easy to deal with.

Proposition 1. Let a be an odd integer. Then a = 1 mod 8 if and only if a is a square mod
2k for k > 3.

Proof. Suppose that a = ¢ mod 2 for k¥ > 3. Then clearly a = ¢ mod 8, and the only
non-zero square mod 8 is 1, so a = 1 mod 8. Conversely, suppose that a = 1 mod 8. We’ll
inductively construct ¢, such that a = ¢ mod 2* for k > 3. By assumption, c3 = 1. Now
suppose that ¢, exists for some k > 3. Then a = ¢ mod 2F says a = ¢2 + 2*¢ for some /.
Define cxy1 = ¢x+2"71¢, and note that ¢}, = (cp+2""1)% = §+ 20+ 227202 = q 227202,
Since k > 3, we have 2k—2 > k+1, s0 ¢;_; = a mod 2¥™! as desired. Therefore by induction,
we have shown that a is a square mod 2% for any k > 3. U

Combining these two results gives us a criterion for checking when an integer a is a
quadratic residue mod n.

Theorem 0.4. Let n = 2°p{* - - - pi* be a factorization into primes with e > 0 and let a be
an integer with ged(a,n) = 1.
(i) If e=0,1, then a is a square mod n if and only if a is a square mod p; for all i.
(ii) If e = 2 then a is a square mod n if and only if a = 1 mod 4 and a is a square mod
p; for all 1.
(i) If e > 3, then a is a square mod n if and only if a =1 mod 8 and a is a square mod
p; for all .

Proof. The proof of all three statements will be largely the same: if a = ¢? mod n, then
clearly a = ¢ mod 2¢ and a = ¢® mod p{* for all i, so a = ¢ mod p; for all i. If e = 2,
then the only non-zero square mod 4 is 1, so a = 1 mod 4. If e > 3, we have a = 1 mod 8
by the above proposition. Now suppose that a is a square mod p; for all i. By Hensel’s
lemma, we saw earlier that a is a square mod p;* for all . If e = 1 then ¢« = 1 mod 2.
If e = 2, then @ = 1 mod 4 means that a is a square mod 4, and if ¢ > 3 the above
proposition says that @ = 1 mod 8 means a is a square mod 2¢. Let f(x) = 2* — a. Since
f(z) = 0 mod 2° is solvable and f(z) = 0 mod p;* is solvable for all i, by problem 2 we have
that f(x) = 0 mod 2°p}* - - - p* is solvable, i.e. a is a square mod n as desired. 0


https://www.math.ucla.edu/~tsmits/11N/Review%20Problems/review1.pdf
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The above theorem tell us the Jacobi symbol still retains some information about whether
a is a square mod n or not.

Corollary 0.5. Let n be an odd integer and a an integer with ged(a,n) = 1. Then if

(E) = —1, then a is not a square mod n. FEquivalently, if a is a square mod n, then (E) = 1.

Proof. Write n = p{* - - - p*. By definition, we have (£) = (£) ... (£)%. Saying () = —1

P1 Pk

means that (I;i) = —1 for some 7, i.e. a is not a square mod p; for some i. By the above
theorem, this means a is not a square mod n. The second statement follows by taking the
contrapositive of the first. 0

As an application of the above theorem, we give the following example of a so local-global
principle.

Theorem 0.6. Let n be an integer. Then n is a square in Z if and only if n is a square
mod p for all primes p.

Proof. If n = k? then clearly n = k* mod p for any prime p. For the more interesting
direction, suppose that n is a square mod p for all prime p but n is not a square in Z.
Then we can write n = a?p; - - - p;, for some primes p;. We will construct an integer N with
(%) = —1, so that by the above corollary, n is not a square mod N, so that n is not a
square mod some prime p dividing N. This will give us a contradiction. To do so, first note
that at least one of the primes p; must be odd. Otherwise, n = 2a?, so n = 2 mod 3 which
contradicts that n is a square mod 3. Let py,...,ps be the odd primes among py, ..., pk.

Consider the system of congruences
(2 =1mod 8
x = bmod py

x =1 mod psy

(7 =1 mod py

where b is any non-square mod p;. By the Chinese remainder theorem, there is an integer N
solving this system. By taking the power of 2 out of the squared part of n if necessary, write

?N:) 2Fa?p; - - - p, for some o’ and some k. Then (%) = (_2/@@/2]61,,“) - (%)k(%) (%) —
Xy...

(pﬂ[) = —1 by Jacobi reciprocity and the fact that (%) = 1 because N = 1 mod 8.
We've reached our desired contradiction, so n must be a a square in Z as desired. O



