GENERATORS MOD N

TIM SMITS

1. INTRODUCTION

Euler's theorem says for any positive integers a, n with (a, n) = 1, that $a^{\varphi(n)} = 1 \mod n$.

Definition 1.1. The order of $a \mod n$, $\operatorname{ord}_n(a)$ is defined as the smallest positive integer k such that $a^k \equiv 1 \mod n$.

Using the language of orders, Euler's theorem immediately tells us the following:

Corollary 1.2. $ord_n(a) \leq \varphi(n)$

The question we will answer is the following: for which n is it true that equality is achievable? In otherwords, for which n is there an integer a with $\operatorname{ord}_n(a) = \varphi(n)$? For an integer a with maximal possible order, we give it a special name:

Definition 1.3. For an integer a with $\operatorname{ord}_n(a) = \varphi(n)$, we call a a generator mod n, or a primitive root mod n.

Example 1.4. By direct computation, we find that $\operatorname{ord}_7(3) = 6$, so that 3 is a generator mod 7. However, we see that every integer co-prime to 8 has order 2 mod 8, so that there is no generator mod 8.

The example illustrates that there is some subtlety in our question. Why is such a question even interesting? Suppose we know there is a generator $g \mod n$. Then the powers $\{1, g, g^2, g^3, \ldots, g^{\varphi(n)-1}\}$ are $\varphi(n)$ distinct invertible elements mod n. We know that that the total count of invertible elements mod n is $\varphi(n)$, so this set hits all of them. This makes doing arithmetic mod n very easy!

2. PROPERTIES OF ORDERS

We'll start by proving some basic properties of $\operatorname{ord}_n(a)$.

Proposition 1. $a^k \equiv 1 \mod n \iff ord_n(a) \mid k$

Proof. Let $m = \operatorname{ord}_n(a)$. By the division algorithm, write n = mq + r with $0 \le r < m$. We have $a^n = a^{mq+r} = (a^m)^q \cdot a^r \equiv a^r \equiv 1 \mod n$. By definition of m, it's the smallest *positive* integer m with the property that $a^m \equiv 1 \mod n$, so this forces r = 0 since r < m. This says n = mq, so $\operatorname{ord}_n(a) \mid n$.

Conversely, suppose that $\operatorname{ord}_n(a) \mid k$. Set $m = \operatorname{ord}_n(a)$, and write k = mq for some integer q. We then have $a^k = (a^m)^q \equiv 1 \mod n$ as desired.

Proposition 2. For any $k \ge 1$, we have $ord_n(a^k) = \frac{m}{(m,k)}$ where $m = ord_n(a)$.

TIM SMITS

Proof. We have $(a^k)^{m/(m,k)} = (a^m)^{k/(m,k)} \equiv 1 \mod n$, where this is justified because (m,k) divides both m and k. This says that $\operatorname{ord}_n(a^k) \mid \frac{m}{(m,k)}$ by the previous proposition. Now, set $t = \operatorname{ord}_n(a^k)$. Then $(a^k)^t = a^{kt} \equiv 1 \mod n$, this means that $m \mid kt$, so $m\ell = kt$ for some $\ell \in \mathbb{Z}$. Dividing both sides by (m,k) we have $\frac{m}{(m,k)}\ell = \frac{k}{(m,k)}t$. Since $(\frac{m}{(m,k)}, \frac{k}{(m,k)}) = 1$, this means that $\frac{m}{(m,k)} \mid t$, so $\operatorname{ord}_n(a^k) = t = \frac{m}{(m,k)}$ as desired.

Proposition 3. Suppose that $ord_n(a) = m$ and $ord_n(b) = \ell$ and $(m, \ell) = 1$. Then $ord_n(ab) = m\ell$.

Proof. Let $t = \operatorname{ord}_n(ab)$. We have $(ab)^{m\ell} = a^{m\ell}b^{m\ell} \equiv 1 \mod n$, so $t \mid m\ell$. By definition of t, we have $(ab)^t = a^t b^t \equiv 1 \mod n$. Raising both sides to the m power, $b^{tm} \equiv 1 \mod n$ so $\ell \mid tm$. Similarly, raising both sides to the ℓ power we have $a^{t\ell} \equiv 1 \mod n$, so $m \mid t\ell$. Since $(m, \ell) = 1$ this means that $m \mid t$ and $\ell \mid t$, and therefore $m\ell \mid t$. This says $\operatorname{ord}_n(ab) = t = m\ell$ as desired.

Proposition 4. Let m, n be positive integers with (m, n) = 1. Then $ord_{mn}(a) = lcm(ord_m(a), ord_n(a))$.

Proof. Let $t = \operatorname{ord}_{mn}(a)$ and $k = \operatorname{lcm}(\operatorname{ord}_m(a), \operatorname{ord}_n(a))$. Then $a^t \equiv 1 \mod mn$, so $a^t \equiv 1 \mod m$ and $a^t \equiv 1 \mod n$. This says $\operatorname{ord}_m(a) \mid t$ and $\operatorname{ord}_n(a) \mid t$ so $k \mid t$. On the other hand, let $k = \operatorname{lcm}(\operatorname{ord}_m(a), \operatorname{ord}_n(a))$. Then $a^k \equiv 1 \mod m$ and $a^k \equiv 1 \mod n$ so by the Chinese remainder theorem, $a^k \equiv 1 \mod mn$, so $t \mid k$ says t = k as desired. \Box

3. Generators mod p

We'll start by showing that for an odd prime p, there is always a generator mod p. The proof relies on the following observation:

Lemma 3.1. Let $N_p(d)$ be the number of integers mod p with $ord_p(a) = d$. If $N_p(d) > 0$, then $N_p(d) = \varphi(d)$.

Proof. Suppose that $\operatorname{ord}_p(a) = d$. Then $a^d \equiv 1 \mod p$, so a is a root of the polynomial $T^d - 1 \mod p$. Since this polynomial has degree d, it has at most d roots mod p. Note that $1, a, a^2, \ldots, a^{d-1}$ are distinct roots of $T^d - 1$, so these are all the roots. Therefore, we wish to determine which of these powers have order d. By proposition 2, $\operatorname{ord}_p(a^k) = d \iff (k, d) = 1$, and there are precisely $\varphi(d)$ such exponents that work.

Lemma 3.2. For any $n \ge 1$, we have $n = \sum_{d|n} \varphi(d)$.

Proof. By computing the sum backwards, we find $\sum_{d|n} \varphi(d) = \sum_{dd'=n} \varphi(d) = \sum_{dd'=n} \varphi(d') = \sum_{d|n} \varphi(n/d)$. By definition, $\varphi(n/d) = \#\{1 \le k \le n/d : (k, n/d) = 1\}$ i.e., $\varphi(d)$ counts the number of integers between 1 and n/d that are co-prime to n/d. Note that $(k, n/d) = 1 \iff (dk, n) = d$. If (m, n) = d, this means m = dk for some $1 \le k \le n/d$, so this means $\varphi(n/d) = \#\{1 \le m \le n : (m, n) = d\}$. That is to say, $\varphi(n/d)$ is the number of integers m with (m, n) = d. Let $S_d = \{1 \le m \le n : (m, n) = d\}$, so that S_d has size $\varphi(n/d)$. For any $1 \le m \le n$, we have (m, n) = d for some integer d, so m falls into one of the sets S_d . Summing up the sizes of all such S_d , we find $n = \sum_{d|n} \varphi(n/d) = \sum_{d|n} \varphi(d)$ as desired. \Box

Theorem 3.3. There are $\varphi(p-1)$ generators mod p.

Proof. For any unit $a \mod p$, we have $\operatorname{ord}_p(a) \mid p-1$. There are p-1 units mod p, so we must have $p-1 = \sum_{d \mid p-1} N_p(d)$. Lemma 3.1 says that $N_p(d) \leq \varphi(d)$ $(N_p(d) \text{ could be } 0!)$

so $p-1 \leq \sum_{d|p-1} N_p(d) \leq \sum_{d|p-1} \varphi(d) = p-1$ by lemma 3.2. This forces equality, so in particular, this must mean that $N_p(d) > 0$, otherwise the second inequality would be strict. By lemma 3.1 again, this means $N_p(p-1) = \varphi(p-1)$, which is what we wanted. \Box

Note that we cannot just easily adapt our proof above to work for an arbitrary n. This is because lemma 3.1 does not generalize to a non-prime modulus! The subtlety is that a polynomial of degree d can have *more* than d roots mod n. For example, $T^2 - 1$ has 4 roots mod 8.

4. Generators mod p^k

To show there is a generator mod p^k for $k \ge 2$ and p an odd prime, our approach will be the lifting philosophy: starting with a generator $g \mod p$, we should be able to lift it to a generator mod p^k for all $k \ge 2$.

Lemma 4.1. There is a generator mod p^2 .

Proof. Let g be a generator mod p, so that g is a root of the polynomial $f(T) = T^{p-1} - 1$ mod p. Since $f(T) = 0 \mod p$ and $f'(T) = (p-1)g^{p-2} \not\equiv 0 \mod p$, by Hensel's lemma, there is an integer c with $c \equiv g \mod p$ such that $f(g+cp) = 0 \mod p^2$, i.e. $(g+cp)^{p-1} \equiv 1 \mod p^2$. By the binomial theorem, we have $(g+cp)^{p-1} = g^{p-1} + cp(p-1) + \cdots + (cp)^{p-1}$. Since p does not divide c(p-1), working mod p^2 , this says $1 \equiv (g+cp)^{p-1} \equiv g^{p-1} - cp \mod p^2$, so $g^{p-1} \equiv 1 + cp \not\equiv 1 \mod p^2$. Since $(g^{p-1})^p = g^{p(p-1)} \equiv 1 \mod p^2$ by Euler's theorem, this means that $\operatorname{ord}_{p^2}(g^{p-1}) = p$. Now, set $t = \operatorname{ord}_{p^2}(g+cp)$. Since $(g+cp)^{p-1} \equiv 1 \mod p^2$, this means that $t \mid p-1$. We have $1 \equiv (g+cp)^t \mod p^2$, so $1 \equiv g^t \mod p$. Since g is a generator mod p, this means that $p-1 \mid t$, so that t = p-1. By proposition 3, this means that $(g+cp)g^{p-1}$ has order $p(p-1) = \varphi(p^2)$ as desired.

Theorem 4.2. If g is a generator mod p^2 , then g is a generator mod p^k for all $k \ge 2$. In particular, there is a generator mod p^k for $k \ge 2$.

Proof. By the above lemma, there is a generator $g \mod p^2$. We'll show that g is a generator mod p^k for all $k \ge 2$ by induction. The case k = 2 is true by assumption, so suppose we know that g is a generator mod p^k for some k, i.e. that $\operatorname{ord}_{p^k}(g) = p^{k-1}(p-1)$. Let $t = \operatorname{ord}_{p^{k+1}}(g)$. Since $g^{p^k(p-1)} \equiv 1 \mod p^{k+1}$, this says $t \mid p^k(p-1)$, and since $g^t \equiv 1 \mod p^k$, this says $p^{k-1}(p-1) \mid t$. Combining these two divisibilities, this says either $t = p^{k-1}(p-1)$ or $t = p^k(p-1)$. Therefore, it's sufficient to prove that $g^{p^{k-1}(p-1)} \not\equiv 1 \mod p^{k+1}$. Since $g^{p-1} \equiv 1 \mod p^{k}$, we can write $g^{p-1} = 1 + p\ell$ for some ℓ , and since g is a generator mod p^2 , we know that $\ell \not\equiv 0 \mod p$. We compute $g^{p(p-1)} = (1+p\ell)^p = 1+p^2\ell + \cdots + (p\ell)^p \equiv 1+p^2\ell \mod p^3$. Now, we have $(g^{p-1})^{p^2} \equiv (1+p^2\ell)^p \equiv 1+\ell p^3 \mod p^4$. Repeating this procedure, we find that $(g^{p-1})^{p^{k-1}} \equiv 1 + \ell p^k \mod p^{k+1}$. This proves that $t = p^k(p-1)$, so by induction, we're done. ⊔

Note that unlike the proof that there is a generator mod p, the proof above is *constructive*. Once we know a generator mod p, we can explicitly find a generator mod p^k for $k \ge 2$.

Example 4.3. Suppose that g is a generator mod p. We'll explicitly construct a generator mod p^2 . The proof of 4.1 says our generator will be $(g + cp)g^{p-1}$, where c comes from the proof of Hensel's lemma. Explicitly going through the proof, set $f(T) = T^{p-1} - 1$. We have $f(g + cp) \equiv f(g) + f'(g)cp \mod p^2$. Since $f(g) \equiv 0 \mod p$, we choose c so that $p(\frac{f(g)}{p} + f'(g)cp) = f(g) + f'(g)cp$.

TIM SMITS

 $\begin{aligned} f'(g)c) &\equiv 0 \mod p^2, \text{ i.e. } \frac{f(g)}{p} + f'(g)c \equiv 0 \mod p. \text{ Solving for } c \text{ says } c \equiv -\frac{f(g)}{p}[f'(g)]^{-1} \mod p. \\ \text{Since } f'(g) &\equiv (p-1)g^{p-2} \mod p, \text{ we see that } [f'(g)]^{-1} \equiv -g \mod p, \text{ so } c \equiv \frac{f(g)}{p}g \mod p. \\ \text{Therefore, our generator is given by } (g + (\frac{f(g)}{p}g)p)g^{p-1} = (1+f(g))g^p = g^{p-1}g^p = \boxed{g^{2p-1}}. \end{aligned}$

As an explicit example, we mentioned earlier that 3 is a generator mod 7, so $3^{13} \equiv 10 \mod 49$ says 10 is a generator mod 49, and therefore a generator mod $7^k \ k \ge 2$.

5. Generators mod 2^k

Unfortunately, we cannot adapt our proof above for p = 2. What breaks down is the last step, that $(g^{p-1})^{p^k} \equiv 1 + p^{k+1}\ell \mod p^{k+2} \implies (g^{p-1})^{p^{k+1}} \equiv 1 + p^{k+2}\ell \mod p^{k+3}$. What goes wrong? When p = 2, if $g^{2^k} \equiv 1 + 2^{k+1}\ell \mod 2^{k+2}$, then $g^{2^{k+1}} \equiv 1 + 2^{k+2}\ell + 2^{2k+2}\ell^2 \mod 2^{k+3}$, and the last term only disappears as long as $2k + 3 \ge k + 3$, i.e. $k \ge 1$. This means the k = 0 step doesn't hold, i.e. that a generator mod 4 doesn't necessarily lift to a generator mod 8! Indeed, we see this is false, as there are *no* generators mod 8.

Theorem 5.1. There is a generator mod 2^k if and only if k = 1 or k = 2.

Proof. If k = 1, then 1 is a generator mod 2. If k = 2, then 3 is a generator mod 4. Now we show that if $k \ge 3$, that there is no generator mod 2^k . Suppose otherwise, that g is a generator mod 2^k for some $k \ge 3$. This means $g^{2^{k-1}} \equiv 1 \mod 2^k$. Since g is a generator, the powers $\{1, g, g^2, \ldots, g^{2^{k-2}}\}$ are the 2^{k-1} different units mod 2^k . We have $g^{\ell} = -1 \mod 2^k$ for some ℓ . Squaring says $g^{2\ell} = 1 \mod 2^k$, so $2^{k-1} \mid 2\ell$ says $2^{k-2} \mid \ell$, i.e. $2^{k-2} = \ell$. On the other hand, we have $g^2 \equiv 1 \mod 8$ since every unit squares to 1 mod 8. This says $g^2 = 1 + 8\ell$ for some ℓ , so that $g^4 \equiv (1 + 8\ell)^2 \equiv 1 \mod 16$. Inductively repeating this, we find that $g^{2^{k-2}} \equiv 1 \mod 2^k$, which says $1 \equiv -1 \mod 2^k$, a contradiction. Therefore, there is no generator mod 2^k for $k \ge 3$.

6. Generators mod n

We're now ready to tackle the question of when there is a generator mod n for general n.

Theorem 6.1. There is a generator mod n if and only if $n = 2, 4, p^k, 2p^k$ for p an odd prime and $k \ge 1$.

Proof. If $n = 2, 4, p^k$ we have seen this already. If $n = 2p^k$, let g be a generator mod p^k . If g is odd, then g has order 1 mod 2 and g has order $\varphi(p^k) \mod p^k$, so g has order $\varphi(p^k) = \varphi(2p^k) \mod 2p^k$ by proposition 4, and therefore is a generator. If g is even, then $g + p^{k-1}$ is odd, and it's easy to check that $\operatorname{ord}_{p^k}(g + p^{k-1}) = \operatorname{ord}_{p^k}(g)$, so $g + p^{k-1}$ is a generator mod $2p^k$. Conversely, write $n = 2^e p_1^{e_1} \cdots p_k^{e_k}$. We have $\operatorname{ord}_n(a) = \operatorname{lcm}(\operatorname{ord}_{2^e}(a), \operatorname{ord}_{p_1^{e_1}}(a), \ldots, \operatorname{ord}_{p_k^{e_k}}(a))$. For each i, we have $\operatorname{ord}_{p_i^{e_i}}(a) \leq \varphi(p_i^{e_i})$. If $e \geq 3$, the proof of 5.1 says $\operatorname{ord}_{2^e}(a) \leq 2^{e-2}$, so $\operatorname{ord}_n(a) < 2^{e-2}\varphi(p_1^{e_i} \cdots p_k^{e_k}) < \varphi(n)$. If we have at least two odd prime factors p_1 and p_2 , then both $\varphi(p_1^{e_1})$ and $\varphi(p_2^{e_2})$ are even, so $\operatorname{lcm}(\operatorname{ord}_{p_2^{e_2}}(a), \operatorname{ord}_{p_1^{e_1}}(a)) < \varphi(p_1^{e_1}p_2^{e_2})$ so that $\operatorname{ord}_n(a) < \varphi(n)$. This leaves the only possible cases of $n = 2^e p^k$ where e = 0, 1 and $k \geq 0$, which leaves the 4 possible cases above.

7. Applications

As an application of theorem 6.1, we give a generalization of Wilson's theorem.

Theorem 7.1 (Wilson). For a prime p, $(p-1)! \equiv -1 \mod p$.

Theorem 7.2 (Gauss). Let $n \ge 2$. Then

$$\prod_{\substack{i=1\\k,n\}=1}}^{n} k \equiv \begin{cases} -1 \mod n & n=2,4,p^k,2p^k\\ 1 \mod n & otherwise \end{cases}$$

for some odd prime p and $k \ge 1$.

Lemma 7.3. The number of solutions to $x^2 \equiv 1 \mod 2^e$ is 4 for $e \geq 3$.

Proof. Note that $\pm 1, \pm 1 + 2^{e-1} \mod 2^e$ are four solutions to $x^2 \equiv 1 \mod 2^e$. We'll prove that these are the only solutions. This is true for e = 3, so assume it's true for some $e \geq 3$. If $a^2 \equiv 1 \mod 2^{e+1}$, then $a^2 \equiv 1 \mod 2^e$, so a must be one of the four solutions listed. Write $a = \pm 1 + 2^{e-1}k + 2^e\ell$ for some $\ell \in \mathbb{Z}$ and $k \in \{0, 1\}$. Then $a^2 = 1 + 2^{2e-2}k^2 + 4^e\ell^2 \pm 2^ek \pm 2^{e+1}\ell + 4^ek\ell$. Since $2e - 2 \geq e + 1$, reducing mod 2^{e+1} says $a^2 \equiv 1 + 2^ek \mod 2^{e+1}$. By assumption, this forces k = 0, i.e. $a \equiv \pm 1 \mod 2^e$. Thus, $a = \pm 1 + 2^e\ell$. If ℓ is even, then $a \equiv \pm 1 \mod 2^{e+1}$, and if ℓ is odd, then $a \equiv \pm 1 + 2^e \mod 2^{e+1}$, which is what we wanted. By induction, the result holds true for $e \geq 3$.

Proof of theorem 7.2. The case of n = 2, 4 are trivial, so suppose that $n = p^k, 2p^k$. Then by theorem 6.1, there is a generator $g \mod n$. The invertible elements mod n are given by

$$1, g, g^2, \dots, g^{\varphi(n)-1}$$
. Therefore, $\prod_{\substack{i=1\\(k,n)=1}}^n k \equiv \prod_{i=0}^{\varphi(n)-1} g^i \equiv g^{\sum_{i=0}^{\varphi(n)-1} i} \mod n$. We have $\sum_{i=0}^{\varphi(n)-1} i = g^{\varphi(n)-1}$.

 $\frac{\varphi(n)(\varphi(n)-1)}{2}.$ Since g is a generator mod n, $g^{\varphi(n)/2} \equiv -1 \mod n$, and since n > 2 we have $\varphi(n)$ is even, so $\varphi(n) - 1$ is odd. Therefore, $g^{\varphi(n)(\varphi(n)-1)/2} \equiv (g^{\varphi(n)/2})^{\varphi(n)-1} \equiv -1 \mod n$. Let $S_d = \{1 \leq a \leq n : \operatorname{ord}_n(a) = d\}$, the set of elements mod n with order d. If $a \in S_d$, then $a^{d-1} \in S_d$ because (d-1,d) = 1. This says we can group all elements of S_d into pairs (a, a^{d-1}) (which are distinct for $d \neq 2$), whose product is 1 mod n. Therefore, the product of all elements in S_d is 1 mod n for $d \geq 3$.

It remains to analyze the set S_2 , the set of elements of order 2. If $a \in S_2$, then $-a \in S_2$, so S_2 consists of pairs of elements (a, -a). Since $a \in S_2$ means $a^2 \equiv 1 \mod n$, then the product of all elements in S_2 is given by $(-1)^k$, where k is the number of pairs $(a, -a) \in S_2$. To answer this, we must count the number of solutions to $x^2 \equiv 1 \mod n$. Write $n = 2^e p_1^{e_1} \dots p_k^{e_k}$. By problem 2(b), the number of solutions to $x^2 \equiv 1 \mod n$ is the product of the number of solutions of $x^2 \equiv 1 \mod 2^e$ and $x^2 \equiv 1 \mod p_i^{e_i}$ for $1 \leq i \leq k$. By problem 6 there are 2 solutions to $x^2 \equiv 1 \mod p_i^{e_i}$, and by the previous lemma, there are 4 solutions to $x^2 \equiv 1 \mod 2^e$ for $e \geq 3$. Since $n \neq 2, 4, p^k, 2p^k$, we must have either $e \geq 3$ or at least two odd prime factors. In either case, the number of solutions to $x^2 \equiv 1 \mod n$ is divisible by 4, so there are an even number of pairs in S_2 . Therefore, the product of all elements in S_2 is $1 \mod n$. We have $\prod_{\substack{i=1 \ (k,n)=1}}^n k \equiv \prod_{d \mid n} \prod_{a \in S_d} a \equiv 1 \mod n$ as desired.