GENERATORS MOD N

TIM SMITS

1. INTRODUCTION
Euler’s theorem says for any positive integers a,n with (a,n) = 1, that a*™ = 1 mod n.

Definition 1.1. The order of a mod n, ord,(a) is defined as the smallest positive integer
k such that a* = 1 mod n.

Using the language of orders, Euler’s theorem immediately tells us the following:
Corollary 1.2. ord,(a) < ¢(n)

The question we will answer is the following: for which n is it true that equality is
achievable? In otherwords, for which n is there an integer a with ord,(a) = ¢(n)? For
an integer ¢ with maximal possible order, we give it a special name:

Definition 1.3. For an integer a with ord,(a) = ¢(n), we call a a generator mod n, or a
primitive root mod n.

Example 1.4. By direct computation, we find that ord;(3) = 6, so that 3 is a generator
mod 7. However, we see that every integer co-prime to 8 has order 2 mod 8, so that there is
no generator mod 8.

The example illustrates that there is some subtlety in our question. Why is such a ques-
tion even interesting?” Suppose we know there is a generator ¢ mod n. Then the powers
{1,9,9% ¢° ...,9°™~'} are ¢(n) distinct invertible elements mod n. We know that that the
total count of invertible elements mod n is ¢(n), so this set hits all of them. This makes
doing arithmetic mod n very easy!

2. PROPERTIES OF ORDERS

We'll start by proving some basic properties of ord,(a).
Proposition 1. ¢* =1 mod n <= ord,(a) | k

Proof. Let m = ord,(a). By the division algorithm, write n = mq + r with 0 <r < m. We
have @™ = a™*" = (a™)?-a” = a" = 1 mod n. By definition of m, it’s the smallest positive
integer m with the property that a” = 1 mod n, so this forces r = 0 since r < m. This says
n = mgq, so ord,(a) | n.

Conversely, suppose that ord,(a) | k. Set m = ord,(a), and write & = mq for some integer
q. We then have a* = (a™)? = 1 mod n as desired. O

Proposition 2. For any k > 1, we have ord,(a*) = gy Where m = ordy,(a).
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Proof. We have (a®)™/(m#) = (gm)k/(mk) = 1 mod n, where this is justified because (m, k)
divides both m and k. This says that ord,(a*) | (WT—M by the previous proposition. Now, set

t = ord,(a*). Then (a*)! = a* = 1 mod n, this means that m | kt, so mf = kt for some
¢ € Z. Dividing both sides by (m, k) we have ol = ﬁt. Since (ﬁ, ﬁ) = 1, this

means that = | £, so ord,(a¥) =t = Ty s desired. O

Proposition 3. Suppose that ord,(a) = m and ord,(b) = ¢ and (m,¢) = 1. Then ord,(ab) =
mi.

Proof. Let t = ord,(ab). We have (ab)™ = a™b™ = 1 mod n, so t | mf. By definition of
t, we have (ab)'! = a'b' = 1 mod n. Raising both sides to the m power, b = 1 mod n so
¢ | tm. Similarly, raising both sides to the £ power we have a’* = 1 mod n, so m | t{. Since
(m, £) =1 this means that m | ¢t and ¢ | ¢, and therefore m¢ | t. This says ord,(ab) =t = ml
as desired. 0

Proposition 4. Let m,n be positive integers with (m,n) = 1. Then ord,,,(a) = lem(ord,,(a), ord,(a)).
t

Proof. Let t = ord,,,(a) and k& = lem(ord,,(a),ord,(a)). Then a*@ = 1 mod mn, so a*@ =
1 mod m and a* = 1 mod n. This says ord,,(a) | t and ord,(a) | ¢t so k | t. On the other
hand, let & = lem(ord,,(a),ord,(a)). Then a* = 1 mod m and a* = 1 mod n so by the
Chinese remainder theorem, a* = 1 mod mn, so t | k says t = k as desired. 0

3. GENERATORS MOD p

We’ll start by showing that for an odd prime p, there is always a generator mod p. The
proof relies on the following observation:

Lemma 3.1. Let N,(d) be the number of integers mod p with ord,(a) = d. If N,(d) > 0,
then N,(d) = ¢(d).

Proof. Suppose that ord,(a) = d. Then o = 1 mod p, so a is a root of the polynomial
T? —1 mod p. Since this polyomial has degree d, it has at most d roots mod p. Note that
1,a,a?,...,a% " are distinct roots of T¢ — 1, so these are all the roots. Therefore, we wish to
determine which of these powers have order d. By proposition 2, ord,(a*) = d < (k,d) =
1, and there are precisely ¢(d) such exponents that work. 0

Lemma 3.2. For any n > 1, we haven =3, »(d).

Proof. By computing the sum backwards, we find >, ¢(d) = >_0_, ©(d) = 30—, p(d) =
> P(n/d). By definition, ¢(n/d) = #{1 <k < n/d: (k,n/d) = 1} ie., o(d) counts the
number of integers between 1 and n/d that are co-prime to n/d. Note that (k,n/d) =
1 < (dk,n) =d. If (m,n) = d, this means m = dk for some 1 < k < n/d, so this means
p(n/d) = #{1 < m < n: (m,n) = d}. That is to say, p(n/d) is the number of integers
m with (m,n) = d. Let Sy = {1 <m < n:(m,n) = d}, so that Sy has size p(n/d). For
any 1 < m < n, we have (m,n) = d for some integer d, so m falls into one of the sets Sy.
Summing up the sizes of all such Sq, we find n =3, p(n/d) =3, ©(d) as desired.  [J

Theorem 3.3. There are o(p — 1) generators mod p.

Proof. For any unit a mod p, we have ord,(a) | p — 1. There are p — 1 units mod p, so we
must have p —1 = >, | Np(d). Lemma 3.1 says that N,(d) < ¢(d) (Np(d) could be 0!)
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sop—1<3 5,1 Np(d) <32, #(d) =p—1Dby lemma 3.2. This forces equality, so in
particular, this must mean that N,(d) > 0, otherwise the second inequality would be strict.
By lemma 3.1 again, this means N,(p — 1) = ¢(p — 1), which is what we wanted. O

Note that we cannot just easily adapt our proof above to work for an arbitrary n. This
is because lemma 3.1 does not generalize to a non-prime modulus! The subtlety is that a
polynomial of degree d can have more than d roots mod n. For example, T? — 1 has 4 roots
mod 8.

4. GENERATORS MOD p*

To show there is a generator mod p* for k > 2 and p an odd prime, our approach will be
the lifting philosophy: starting with a generator g mod p, we should be able to lift it to a
generator mod p* for all k > 2.

Lemma 4.1. There is a generator mod p?.

Proof. Let g be a generator mod p, so that g is a root of the polynomial f(T) = TP~! —1
mod p. Since f(T') = 0 mod p and f'(T) = (p— 1)g?~? # 0 mod p, by Hensel’s lemma, there
is an integer ¢ with ¢ = g mod p such that f(g+cp) = 0 mod p?, i.e. (g+cp)P~! =1 mod p?.
By the binomial theorem, we have (g + cp)P™' = ¢! +ep(p — 1) + -+ + (ep)P~!. Since p
does not divide ¢(p — 1), working mod p?, this says 1 = (g + ¢p)’* = ¢! — ¢p mod p?,
so gP"' =1+ cp # 1 mod p?. Since (¢?~!)? = ¢g?®~Y = 1 mod p? by Euler’s theorem, this
means that ord,2(¢?~') = p. Now, set t = ord,2(g + ¢p). Since (g + cp)?~! =1 mod p?, this
means that ¢ | p— 1. We have 1 = (g + ¢p)® mod p?, so 1 = ¢* mod p. Since g is a generator
mod p, this means that p — 1 | ¢, so that ¢ = p — 1. By proposition 3, this means that
(g + cp)gP~! has order p(p — 1) = ¢(p?) as desired. O

Theorem 4.2. If g is a generator mod p?, then g is a generator mod p* for all k > 2. In
particular, there is a generator mod p* for k > 2.

Proof. By the above lemma, there is a generator g mod p?. We’ll show that ¢ is a generator
mod p* for all k& > 2 by induction. The case k = 2 is true by assumption, so suppose
we know that ¢ is a generator mod p* for some k, i.e. that ord(g) = p*~'(p —1). Let
t = ord,r+1(g). Since ¢?* =1 =1 mod p**?, this says ¢ | p*(p — 1), and since ¢g* = 1 mod p*,
this says p*~1(p—1) | t. Combining these two divisibilities, this says either ¢t = p*~1(p—1) or
t = p*(p — 1). Therefore, it’s sufficient to prove that ¢?"  ®=D 2 1 mod p**!. Since g?~! =
1 mod p, we can write g?~t = 1 + p/ for some ¢, and since g is a generator mod p?, we know
that £ # 0 mod p. We compute g?®~V) = (1 4+pl)P =1+ p*( + --- + (pf)? = 1 + p?>¢ mod p*.
Now, we have (¢?"1)?" = (1 + p*)? = 1 + {p® mod p*. Repeating this procedure, we find
that (¢»~1)**"" = 1 + ¢p* mod p*+!. This proves that ¢ = p¥(p — 1), so by induction, we're
done. 0

Note that unlike the proof that there is a generator mod p, the proof above is constructive.
Once we know a generator mod p, we can explicitly find a generator mod p* for k& > 2.

Example 4.3. Suppose that g is a generator mod p. We’ll explicitly construct a generator
mod p?. The proof of 4.1 says our generator will be (g + ¢p)g?~!, where ¢ comes from the
proof of Hensel’s lemma. Explicitly going through the proof, set f(T) = T?~! — 1. We have

flg+cp) = f(g) + f'(g)ep mod p?. Since f(g) = 0 mod p, we choose ¢ so that p(% +
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f'(g)c) = 0 mod p?, i.e. % + f'(g)c = 0 mod p. Solving for ¢ says ¢ = —%[f’(g)]*1 mod p.

— flg)

Since f'(g) = (p — 1)g?~? mod p, we see that [f'(¢g)]”! = —g mod p, so ¢ = 29 mod p.

Therefore, our generator is given by (g + (£2¢)p)g?! = (1 + f(g))g* = g"1g* =| ¢ |

p

As an explict example, we mentioned earlier that 3 is a generator mod 7, so 3!3 = 10 mod
49 says 10 is a generator mod 49, and therefore a generator mod 7% k > 2.

5. GENERATORS MOD 2F

Unfortunately, we cannot adapt our proof above for p = 2. What breaks down is the last
step, that (¢P1)?" = 1 + pF+¢ mod pF™2 = (¢g*1)P""" =1 4 p*2¢ mod p**3. What goes
wrong? When p = 2, if ¢*° = 1+ 210 mod 22, then g2 = 14 2F+2¢ 4 22242 o 2k+3,
and the last term only disappears as long as 2k +3 > k + 3, i.e. kK > 1. This means the
k = 0 step doesn’t hold, i.e. that a generator mod 4 doesn’t necessarily lift to a generator
mod 8! Indeed, we see this is false, as there are no generators mod 8.

Theorem 5.1. There is a generator mod 2% if and only if k =1 or k = 2.

Proof. If k = 1, then 1 is a generator mod 2. If k = 2, then 3 is a generator mod 4. Now
we show that if ¥ > 3, that there is no generator mod 2*. Suppose otherwise, that g is a
generator mod 2F for some k& > 3. This means g2k71 = 1 mod 2*. Since g is a generator, the
powers {1,9,¢%,...,¢% '} are the 281 different units mod 2¥. We have ¢’ = —1 mod 2
for some /. Squaring says g2 = 1 mod 2, so 27! | 20 says 2¥72 | £, i.e. 22 = /. On
the other hand, we have ¢g> = 1 mod 8 since every unit squares to 1 mod 8. This says
g*> = 1+ 8¢ for some ¢, so that ¢g* = (1 + 8()> = 1 mod 16. Inductively repeating this, we
find that ¢ * = 1 mod 2, which says 1 = —1 mod 2*, a contradiction. Therefore, there is
no generator mod 2* for k > 3. O

6. GENERATORS MOD n

We're now ready to tackle the question of when there is a generator mod n for general n.

Theorem 6.1. There is a generator mod n if and only if n = 2,4, p*, 2p* for p an odd prime
and k> 1.

Proof. If n = 2,4, p* we have seen this already. If n = 2p*, let g be a generator mod p*. If ¢
is odd, then g has order 1 mod 2 and g has order (p*) mod p*, so g has order p(p*) = p(2p*)
mod 2p* by proposition 4, and therefore is a generator. If ¢ is even, then g+ p*~! is odd, and
it’s easy to check that ord,(g + p*~') = ord,x(g), so g + p*~! is a generator mod 2p*. Con-
versely, write n = 2°p{" ---p;*. We have ord,(a) = lem(ordae(a), ord e (a), ... yord e (a)).
For each i, we have ordi(a) < ¢(p;'). If e = 3, the proof of 5.1 says ordye(a) < 2672,
so ord,(a) < 2°72p(py - p) < @(n). If we have at least two odd prime factors p; and
p2, then both ¢(pi') and ¢(p3*) are even, so lem(ord,e(a), ord,e (a)) < ¢(pi'ps?) so that
ord,(a) < ¢(n). This leaves the only possible cases of n = 2¢p* where ¢ = 0,1 and k > 0,
which leaves the 4 possible cases above. 0
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7. APPLICATIONS

As an application of theorem 6.1, we give a generalization of Wilson’s theorem.
Theorem 7.1 (Wilson). For a prime p, (p —1)! = —1 mod p.
Theorem 7.2 (Gauss). Let n > 2. Then

ﬁk_ —lmodn n=24,p" 2"
- " |1modn otherwise
(kym)=1

for some odd prime p and k > 1.
Lemma 7.3. The number of solutions to x> = 1 mod 2¢ is 4 for e > 3.

Proof. Note that +1, £1 + 2! mod 2¢ are four solutions to 22 = 1 mod 2¢. We'll prove that
these are the only solutions. This is true for e = 3, so assume it’s true for some e > 3. If
a’> = 1 mod 2°t!, then a? = 1 mod 2, so a must be one of the four solutions listed. Write a =
+1+42¢71k+2%¢ for some £ € Z and k € {0,1}. Then a® = 1422¢72k? 440242k +2T1 144k L.
Since 2e — 2 > e + 1, reducing mod 2¢*! says a? = 1 + 2°k mod 2°T!. By assumption, this
forces k = 0, i.e. @ = 1 mod 2¢. Thus, a = £1 + 2°¢. If / is even, then a = +1 mod 2°*!,
and if ¢ is odd, then a = £1 + 2° mod 2¢*!, which is what we wanted. By induction, the
result holds true for e > 3. O

Proof of theorem 7.2. The case of n = 2,4 are trivial, so suppose that n = p¥,2p*. Then
by theorem 6.1, there is a generator g mod n. The invertible elements mod n are given by

w(n)—
1,9,9% ...,97™~1 Therefore, H k= H g =g 207N mod n. We have Zson) L —
(k, ;> 1
%- Since g is a generator mod n, ¢g#™/2 = —1 mod n, and since n > 2 we have

¢(n) is even, so p(n) — 1 is odd. Therefore, g#MPM=1/2 = (ge()/2)e(M)=1 = _1 mod n.
Let Sg = {1 < a < n:ord,(a) = d}, the set of elements mod n with order d. If a € Sy,
then a?~! € Sy because (d — 1,d) = 1. This says we can group all elements of S, into pairs
(a,a®') (which are distinct for d # 2), whose product is 1 mod n. Therefore, the product
of all elements in S; is 1 mod n for d > 3.

It remains to analyze the set Sy, the set of elements of order 2. If a € S5, then —a € S5, so
Sy consists of pairs of elements (a, —a). Since a € S5 means a? = 1 mod n, then the product
of all elements in Sy is given by (—1)*, where k is the number of pairs (a,—a) € Sy. To
answer this, we must count the number of solutlons to 22 = 1 mod n. Write n = 2°p{* ... pi*.
By problem 2(b), the number of solutions to > = 1 mod n is the product of the number
of solutions of 22 = 1 mod 2¢ and z> = 1 mod p{* for 1 < i < k. By problem 6 there
are 2 solutions to 2 = 1 mod p{’, and by the previous lemma, there are 4 solutions to
22 = 1 mod 2¢ for e > 3. Since n # 2,4, p*, 2p*, we must have either e > 3 or at least two
odd prime factors. In either case, the number of solutions to #? = 1 mod n is divisible by 4,
so there are an even number of pairs in S;. Therefore, the product of all elements in S5 is

1 mod n. We have H k= H H a = 1 mod n as desired.

i=1 djn a€Sq
(kn)=1
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