
GENERATORS MOD N

TIM SMITS

1. introduction

Euler’s theorem says for any positive integers a, n with (a, n) = 1, that aϕ(n) = 1 mod n.

Definition 1.1. The order of a mod n, ordn(a) is defined as the smallest positive integer
k such that ak ≡ 1 mod n.

Using the language of orders, Euler’s theorem immediately tells us the following:

Corollary 1.2. ordn(a) ≤ ϕ(n)

The question we will answer is the following: for which n is it true that equality is
achievable? In otherwords, for which n is there an integer a with ordn(a) = ϕ(n)? For
an integer a with maximal possible order, we give it a special name:

Definition 1.3. For an integer a with ordn(a) = ϕ(n), we call a a generator mod n, or a
primitive root mod n.

Example 1.4. By direct computation, we find that ord7(3) = 6, so that 3 is a generator
mod 7. However, we see that every integer co-prime to 8 has order 2 mod 8, so that there is
no generator mod 8.

The example illustrates that there is some subtlety in our question. Why is such a ques-
tion even interesting? Suppose we know there is a generator g mod n. Then the powers
{1, g, g2, g3, . . . , gϕ(n)−1} are ϕ(n) distinct invertible elements mod n. We know that that the
total count of invertible elements mod n is ϕ(n), so this set hits all of them. This makes
doing arithmetic mod n very easy!

2. properties of orders

We’ll start by proving some basic properties of ordn(a).

Proposition 1. ak ≡ 1 mod n ⇐⇒ ordn(a) | k

Proof. Let m = ordn(a). By the division algorithm, write n = mq + r with 0 ≤ r < m. We
have an = amq+r = (am)q · ar ≡ ar ≡ 1 mod n. By definition of m, it’s the smallest positive
integer m with the property that am ≡ 1 mod n, so this forces r = 0 since r < m. This says
n = mq, so ordn(a) | n.

Conversely, suppose that ordn(a) | k. Set m = ordn(a), and write k = mq for some integer
q. We then have ak = (am)q ≡ 1 mod n as desired. �

Proposition 2. For any k ≥ 1, we have ordn(ak) = m
(m,k)

where m = ordn(a).
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Proof. We have (ak)m/(m,k) = (am)k/(m,k) ≡ 1 mod n, where this is justified because (m, k)
divides both m and k. This says that ordn(ak) | m

(m,k)
by the previous proposition. Now, set

t = ordn(ak). Then (ak)t = akt ≡ 1 mod n, this means that m | kt, so m` = kt for some
` ∈ Z. Dividing both sides by (m, k) we have m

(m,k)
` = k

(m,k)
t. Since ( m

(m,k)
, k
(m,k)

) = 1, this

means that m
(m,k)

| t, so ordn(ak) = t = m
(m,k)

as desired. �

Proposition 3. Suppose that ordn(a) = m and ordn(b) = ` and (m, `) = 1. Then ordn(ab) =
m`.

Proof. Let t = ordn(ab). We have (ab)m` = am`bm` ≡ 1 mod n, so t | m`. By definition of
t, we have (ab)t = atbt ≡ 1 mod n. Raising both sides to the m power, btm ≡ 1 mod n so
` | tm. Similarly, raising both sides to the ` power we have at` ≡ 1 mod n, so m | t`. Since
(m, `) = 1 this means that m | t and ` | t, and therefore m` | t. This says ordn(ab) = t = m`
as desired. �

Proposition 4. Let m,n be positive integers with (m,n) = 1. Then ordmn(a) = lcm(ordm(a), ordn(a)).

Proof. Let t = ordmn(a) and k = lcm(ordm(a), ordn(a)). Then at ≡ 1 mod mn, so at ≡
1 mod m and at ≡ 1 mod n. This says ordm(a) | t and ordn(a) | t so k | t. On the other
hand, let k = lcm(ordm(a), ordn(a)). Then ak ≡ 1 mod m and ak ≡ 1 mod n so by the
Chinese remainder theorem, ak ≡ 1 mod mn, so t | k says t = k as desired. �

3. generators mod p

We’ll start by showing that for an odd prime p, there is always a generator mod p. The
proof relies on the following observation:

Lemma 3.1. Let Np(d) be the number of integers mod p with ordp(a) = d. If Np(d) > 0,
then Np(d) = ϕ(d).

Proof. Suppose that ordp(a) = d. Then ad ≡ 1 mod p, so a is a root of the polynomial
T d − 1 mod p. Since this polyomial has degree d, it has at most d roots mod p. Note that
1, a, a2, . . . , ad−1 are distinct roots of T d−1, so these are all the roots. Therefore, we wish to
determine which of these powers have order d. By proposition 2, ordp(a

k) = d ⇐⇒ (k, d) =
1, and there are precisely ϕ(d) such exponents that work. �

Lemma 3.2. For any n ≥ 1, we have n =
∑

d|n ϕ(d).

Proof. By computing the sum backwards, we find
∑

d|n ϕ(d) =
∑

dd′=n ϕ(d) =
∑

dd′=n ϕ(d′) =∑
d|n ϕ(n/d). By definition, ϕ(n/d) = #{1 ≤ k ≤ n/d : (k, n/d) = 1} i.e., ϕ(d) counts the

number of integers between 1 and n/d that are co-prime to n/d. Note that (k, n/d) =
1 ⇐⇒ (dk, n) = d. If (m,n) = d, this means m = dk for some 1 ≤ k ≤ n/d, so this means
ϕ(n/d) = #{1 ≤ m ≤ n : (m,n) = d}. That is to say, ϕ(n/d) is the number of integers
m with (m,n) = d. Let Sd = {1 ≤ m ≤ n : (m,n) = d}, so that Sd has size ϕ(n/d). For
any 1 ≤ m ≤ n, we have (m,n) = d for some integer d, so m falls into one of the sets Sd.
Summing up the sizes of all such Sd, we find n =

∑
d|n ϕ(n/d) =

∑
d|n ϕ(d) as desired. �

Theorem 3.3. There are ϕ(p− 1) generators mod p.

Proof. For any unit a mod p, we have ordp(a) | p − 1. There are p − 1 units mod p, so we
must have p − 1 =

∑
d|p−1Np(d). Lemma 3.1 says that Np(d) ≤ ϕ(d) (Np(d) could be 0!)
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so p − 1 ≤
∑

d|p−1Np(d) ≤
∑

d|p−1 ϕ(d) = p − 1 by lemma 3.2. This forces equality, so in

particular, this must mean that Np(d) > 0, otherwise the second inequality would be strict.
By lemma 3.1 again, this means Np(p− 1) = ϕ(p− 1), which is what we wanted. �

Note that we cannot just easily adapt our proof above to work for an arbitrary n. This
is because lemma 3.1 does not generalize to a non-prime modulus! The subtlety is that a
polynomial of degree d can have more than d roots mod n. For example, T 2 − 1 has 4 roots
mod 8.

4. generators mod pk

To show there is a generator mod pk for k ≥ 2 and p an odd prime, our approach will be
the lifting philosophy: starting with a generator g mod p, we should be able to lift it to a
generator mod pk for all k ≥ 2.

Lemma 4.1. There is a generator mod p2.

Proof. Let g be a generator mod p, so that g is a root of the polynomial f(T ) = T p−1 − 1
mod p. Since f(T ) = 0 mod p and f ′(T ) = (p− 1)gp−2 6≡ 0 mod p, by Hensel’s lemma, there
is an integer c with c ≡ g mod p such that f(g+ cp) = 0 mod p2, i.e. (g+ cp)p−1 ≡ 1 mod p2.
By the binomial theorem, we have (g + cp)p−1 = gp−1 + cp(p − 1) + · · · + (cp)p−1. Since p
does not divide c(p − 1), working mod p2, this says 1 ≡ (g + cp)p−1 ≡ gp−1 − cp mod p2,
so gp−1 ≡ 1 + cp 6≡ 1 mod p2. Since (gp−1)p = gp(p−1) ≡ 1 mod p2 by Euler’s theorem, this
means that ordp2(g

p−1) = p. Now, set t = ordp2(g + cp). Since (g + cp)p−1 ≡ 1 mod p2, this
means that t | p− 1. We have 1 ≡ (g + cp)t mod p2, so 1 ≡ gt mod p. Since g is a generator
mod p, this means that p − 1 | t, so that t = p − 1. By proposition 3, this means that
(g + cp)gp−1 has order p(p− 1) = ϕ(p2) as desired. �

Theorem 4.2. If g is a generator mod p2, then g is a generator mod pk for all k ≥ 2. In
particular, there is a generator mod pk for k ≥ 2.

Proof. By the above lemma, there is a generator g mod p2. We’ll show that g is a generator
mod pk for all k ≥ 2 by induction. The case k = 2 is true by assumption, so suppose
we know that g is a generator mod pk for some k, i.e. that ordpk(g) = pk−1(p − 1). Let

t = ordpk+1(g). Since gp
k(p−1) ≡ 1 mod pk+1, this says t | pk(p− 1), and since gt ≡ 1 mod pk,

this says pk−1(p−1) | t. Combining these two divisibilities, this says either t = pk−1(p−1) or

t = pk(p − 1). Therefore, it’s sufficient to prove that gp
k−1(p−1) 6≡ 1 mod pk+1. Since gp−1 ≡

1 mod p, we can write gp−1 = 1 + p` for some `, and since g is a generator mod p2, we know
that ` 6≡ 0 mod p. We compute gp(p−1) = (1 + p`)p = 1 + p2` + · · ·+ (p`)p ≡ 1 + p2` mod p3.

Now, we have (gp−1)p
2 ≡ (1 + p2`)p ≡ 1 + `p3 mod p4. Repeating this procedure, we find

that (gp−1)p
k−1 ≡ 1 + `pk mod pk+1. This proves that t = pk(p − 1), so by induction, we’re

done. �

Note that unlike the proof that there is a generator mod p, the proof above is constructive.
Once we know a generator mod p, we can explicitly find a generator mod pk for k ≥ 2.

Example 4.3. Suppose that g is a generator mod p. We’ll explicitly construct a generator
mod p2. The proof of 4.1 says our generator will be (g + cp)gp−1, where c comes from the
proof of Hensel’s lemma. Explicitly going through the proof, set f(T ) = T p−1 − 1. We have

f(g + cp) ≡ f(g) + f ′(g)cp mod p2. Since f(g) ≡ 0 mod p, we choose c so that p(f(g)
p

+

https://www.math.ucla.edu/~tsmits/11N/hensel.pdf
https://www.math.ucla.edu/~tsmits/11N/hensel.pdf
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f ′(g)c) ≡ 0 mod p2, i.e. f(g)
p

+f ′(g)c ≡ 0 mod p. Solving for c says c ≡ −f(g)
p

[f ′(g)]−1 mod p.

Since f ′(g) ≡ (p − 1)gp−2 mod p, we see that [f ′(g)]−1 ≡ −g mod p, so c ≡ f(g)
p
g mod p.

Therefore, our generator is given by (g + (f(g)
p
g)p)gp−1 = (1 + f(g))gp = gp−1gp = g2p−1 .

As an explict example, we mentioned earlier that 3 is a generator mod 7, so 313 ≡ 10 mod
49 says 10 is a generator mod 49, and therefore a generator mod 7k k ≥ 2.

5. Generators mod 2k

Unfortunately, we cannot adapt our proof above for p = 2. What breaks down is the last
step, that (gp−1)p

k ≡ 1 + pk+1` mod pk+2 =⇒ (gp−1)p
k+1 ≡ 1 + pk+2` mod pk+3. What goes

wrong? When p = 2, if g2
k ≡ 1 + 2k+1` mod 2k+2, then g2

k+1 ≡ 1 + 2k+2`+ 22k+2`2 mod 2k+3,
and the last term only disappears as long as 2k + 3 ≥ k + 3, i.e. k ≥ 1. This means the
k = 0 step doesn’t hold, i.e. that a generator mod 4 doesn’t necessarily lift to a generator
mod 8! Indeed, we see this is false, as there are no generators mod 8.

Theorem 5.1. There is a generator mod 2k if and only if k = 1 or k = 2.

Proof. If k = 1, then 1 is a generator mod 2. If k = 2, then 3 is a generator mod 4. Now
we show that if k ≥ 3, that there is no generator mod 2k. Suppose otherwise, that g is a
generator mod 2k for some k ≥ 3. This means g2

k−1 ≡ 1 mod 2k. Since g is a generator, the
powers {1, g, g2, . . . , g2k−2} are the 2k−1 different units mod 2k. We have g` = −1 mod 2k

for some `. Squaring says g2` = 1 mod 2k, so 2k−1 | 2` says 2k−2 | `, i.e. 2k−2 = `. On
the other hand, we have g2 ≡ 1 mod 8 since every unit squares to 1 mod 8. This says
g2 = 1 + 8` for some `, so that g4 ≡ (1 + 8`)2 ≡ 1 mod 16. Inductively repeating this, we

find that g2
k−2 ≡ 1 mod 2k, which says 1 ≡ −1 mod 2k, a contradiction. Therefore, there is

no generator mod 2k for k ≥ 3. �

6. Generators mod n

We’re now ready to tackle the question of when there is a generator mod n for general n.

Theorem 6.1. There is a generator mod n if and only if n = 2, 4, pk, 2pk for p an odd prime
and k ≥ 1.

Proof. If n = 2, 4, pk we have seen this already. If n = 2pk, let g be a generator mod pk. If g
is odd, then g has order 1 mod 2 and g has order ϕ(pk) mod pk, so g has order ϕ(pk) = ϕ(2pk)
mod 2pk by proposition 4, and therefore is a generator. If g is even, then g+pk−1 is odd, and
it’s easy to check that ordpk(g + pk−1) = ordpk(g), so g + pk−1 is a generator mod 2pk. Con-
versely, write n = 2epe11 · · · p

ek
k . We have ordn(a) = lcm(ord2e(a), ordp

e1
1

(a), . . . , ordp
ek
k

(a)).

For each i, we have ordp
ei
i

(a) ≤ ϕ(peii ). If e ≥ 3, the proof of 5.1 says ord2e(a) ≤ 2e−2,

so ordn(a) < 2e−2ϕ(pei1 · · · p
ek
k ) < ϕ(n). If we have at least two odd prime factors p1 and

p2, then both ϕ(pe11 ) and ϕ(pe22 ) are even, so lcm(ordp
e2
2

(a), ordp
e1
1

(a)) < ϕ(pe11 pe22 ) so that

ordn(a) < ϕ(n). This leaves the only possible cases of n = 2epk where e = 0, 1 and k ≥ 0,
which leaves the 4 possible cases above. �
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7. Applications

As an application of theorem 6.1, we give a generalization of Wilson’s theorem.

Theorem 7.1 (Wilson). For a prime p, (p− 1)! ≡ −1 mod p.

Theorem 7.2 (Gauss). Let n ≥ 2. Then
n∏

i=1
(k,n)=1

k ≡

{
−1 mod n n = 2, 4, pk, 2pk

1 mod n otherwise

for some odd prime p and k ≥ 1.

Lemma 7.3. The number of solutions to x2 ≡ 1 mod 2e is 4 for e ≥ 3.

Proof. Note that ±1,±1+2e−1 mod 2e are four solutions to x2 ≡ 1 mod 2e. We’ll prove that
these are the only solutions. This is true for e = 3, so assume it’s true for some e ≥ 3. If
a2 ≡ 1 mod 2e+1, then a2 ≡ 1 mod 2e, so a must be one of the four solutions listed. Write a =
±1+2e−1k+2e` for some ` ∈ Z and k ∈ {0, 1}. Then a2 = 1+22e−2k2+4e`2±2ek±2e+1`+4ek`.
Since 2e − 2 ≥ e + 1, reducing mod 2e+1 says a2 ≡ 1 + 2ek mod 2e+1. By assumption, this
forces k = 0, i.e. a ≡ ±1 mod 2e. Thus, a = ±1 + 2e`. If ` is even, then a ≡ ±1 mod 2e+1,
and if ` is odd, then a ≡ ±1 + 2e mod 2e+1, which is what we wanted. By induction, the
result holds true for e ≥ 3. �

Proof of theorem 7.2. The case of n = 2, 4 are trivial, so suppose that n = pk, 2pk. Then
by theorem 6.1, there is a generator g mod n. The invertible elements mod n are given by

1, g, g2, . . . , gϕ(n)−1. Therefore,
n∏

i=1
(k,n)=1

k ≡
ϕ(n)−1∏
i=0

gi ≡ g
∑ϕ(n)−1

i=0 i mod n. We have
∑ϕ(n)−1

i=0 i =

ϕ(n)(ϕ(n)−1)
2

. Since g is a generator mod n, gϕ(n)/2 ≡ −1 mod n, and since n > 2 we have

ϕ(n) is even, so ϕ(n) − 1 is odd. Therefore, gϕ(n)(ϕ(n)−1)/2 ≡ (gϕ(n)/2)ϕ(n)−1 ≡ −1 mod n.
Let Sd = {1 ≤ a ≤ n : ordn(a) = d}, the set of elements mod n with order d. If a ∈ Sd,
then ad−1 ∈ Sd because (d− 1, d) = 1. This says we can group all elements of Sd into pairs
(a, ad−1) (which are distinct for d 6= 2), whose product is 1 mod n. Therefore, the product
of all elements in Sd is 1 mod n for d ≥ 3.

It remains to analyze the set S2, the set of elements of order 2. If a ∈ S2, then −a ∈ S2, so
S2 consists of pairs of elements (a,−a). Since a ∈ S2 means a2 ≡ 1 mod n, then the product
of all elements in S2 is given by (−1)k, where k is the number of pairs (a,−a) ∈ S2. To
answer this, we must count the number of solutions to x2 ≡ 1 mod n. Write n = 2epe11 . . . pekk .
By problem 2(b), the number of solutions to x2 ≡ 1 mod n is the product of the number
of solutions of x2 ≡ 1 mod 2e and x2 ≡ 1 mod peii for 1 ≤ i ≤ k. By problem 6 there
are 2 solutions to x2 ≡ 1 mod peii , and by the previous lemma, there are 4 solutions to
x2 ≡ 1 mod 2e for e ≥ 3. Since n 6= 2, 4, pk, 2pk, we must have either e ≥ 3 or at least two
odd prime factors. In either case, the number of solutions to x2 ≡ 1 mod n is divisible by 4,
so there are an even number of pairs in S2. Therefore, the product of all elements in S2 is

1 mod n. We have
n∏

i=1
(k,n)=1

k ≡
∏
d|n

∏
a∈Sd

a ≡ 1 mod n as desired.

�
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