
DECIMAL EXPANSIONS

TIM SMITS

In elementary school, you learn that a rational number x between 0 and 1 has either a finite
decimal expansion x = .c1c2 . . . cd, or is eventually periodic, that is x = .b1b2 . . . bmc1c2 . . . cd.
The goal of this handout will be to explain this phenomenon, and determine algorithms for
determining decimal expansions. Surprisingly, the key to this will be Euler’s theorem:

Theorem 0.1. Let a,m be positive integers with (a,m) = 1. Then aϕ(m) ≡ 1 mod m.

We’ll start by showing that rational numbers are precisely those with eventually periodic
decimal expansions.

Theorem 0.2. Let x be a real number with 0 < x < 1. Then x is rational if and only if the
decimal expansion of x is eventually periodic.

Proof. First, suppose that x is rational. Write x = a
b

with (a, b) = 1, and suppose the decimal

expansion of x is x = .c1c2c3 . . .. Then 10kx = c1c2 . . . ck.ck+1 . . .. By the division algorithm,

write 10ka = bqk + rk where 0 ≤ rk < b. Thus, c1c2 . . . ck.ck+1 = 10kx = 10ka
b

= qk + rk
b

,
so that qk = c1 . . . ck and rk

b
= .ck+1ck+2 . . .. Since there are only finitely many possi-

ble values for rk, there exist some integers m,n with m < n such that rm = rn, so that
.cm+1cm+2 . . . = .cn+1cn+2 . . .. This says the decimal expansion of x is .c1c2 . . . cm+1 . . . cn.

Next, assume that x = .b1b2 . . . bmc1 . . . cd. Then 10mx = b1 . . . bm.c1 . . . cd. Therefore
if we can show c1 . . . cd is rational, we’re done, as 10mx will then be an integer plus a
rational number, and therefore solving for x says x is rational. Set y = .c1 . . . cd. Then
10dy = c1 . . . cd.c1 . . . cd, so (10d − 1)y = c1 . . . cd says y = c1...cd

10d−1 , so that y is rational as
desired. �

Saying the decimal expansion is finite means that the repeating part is a block of 0’s, so
we really have proved what we wanted: (the repeating block is either all 0’s or it isn’t). Note
that the above proof is constructive: given a rational number, it gives us an algorithm for
computing it’s decimal expansion, and given a decimal expansion, it tells us what rational
number it comes from.

Example 0.3. Let x = .11123. Then 100x = 11.123, so we need to compute y = .123. We
have 1000y = 123.123, so 999y = 123 says y = 123

999
. Therefore, 100x = 11 + 123

999
= 11112

999
, so

x = 11112
99900

= 926
8325

.

Example 0.4. Let x = 1
303

. To compute the decimal expansion of x, we follow the proof:
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101 · 1 = 303 · 0 + 10

102 · 1 = 303 · 0 + 100

103 · 1 = 303 · 3 + 91

104 · 1 = 303 · 33 + 1

105 · 1 = 303 · 330 + 10

We have found two integers m and n with rm = rn, namely, m = 1 and n = 5. This says
x = .c1c2c3c4c5. We can now read off the digits by looking at the remainders:

c1 = q1 = 0

10c1 + c2 = q2 = 0 =⇒ c2 = 0

100c1 + 10c2 + c3 = q3 = 3 =⇒ c3 = 3

1000c1 + 100c2 + 10c3 + c4 = q4 = 33 =⇒ c4 = 3

10000c1 + 1000c2 + 100c3 + 10c4 + c5 = q5 = 330 =⇒ c5 = 0

Therefore, x = .00330 = .0033.

This algorithm is not terribly useful: the output for 1
303

had an initial non-repeating block,
however we could actually write it as a purely repeating decimal!

Our next goal will be to determine whether a rational number x = a
b

has a finite decimal
expansion, or an eventually periodic decimal expansion (with non-zero repeating block), and
to determine a better algorithm for computing the decimal expansion. The key step in our
proof was that there are finitely many remainders upon division by b, so that rm = rn for
some integers m < n. Translated into a statement about modular arithmetic, there are
integers m,n such that 10m ≡ 10n mod b. If 10 is invertible mod b, this is the same thing as
saying 10n−m ≡ 1 mod b, so that there is a solution to 10d ≡ 1 mod b.

For any a,m with (a,m) = 1, Euler’s theorem tells us that aϕ(m) ≡ 1 mod m. This says
there is some integer d with ad ≡ 1 mod m. We give the smallest such d a special name:

Definition 0.5. Let (a,m) = 1. The order of a mod m, denoted ordm(a) is the smallest
integer d such that ad ≡ 1 mod m.

Example 0.6. ord100(7) = 4 because 74 ≡ 1 mod 100 and 4 is the smallest such integer with
this property.

The following fact about orders will be very useful for us. For a proof, see the week 5
discussion notes.

Proposition 1. ak ≡ 1 mod m if and only if k | ordm(a).

We’ll first tackle the case where x has a purely periodic decimal expansion, i.e. x =
.c1 . . . cd.

Theorem 0.7. Let x = a
b

with (a, b) = 1 be a rational number between 0 and 1. Then the
decimal expansion of x is purely periodic if and only if (10, b) = 1. In particular, the period
length is given by ordb(10).
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Proof. First, suppose that x = .c1 . . . cd is purely periodic. Then 10dx = c1c2 . . . cd.c1 . . . cd,
so x = c1...cd

10d−1 . Since 10d − 1 ≡ 1 mod 10, the denominator remains co-prime to 10 even after
canceling common factors with the numerator.

Now suppose that (10, b) = 1, and let d = ordb(10). Then 10d ≡ 1 mod b, so 10d − 1 is
a multiple of b. Write 10d − 1 = bk for some k, so that x = a

b
= ak

bk
= ak

10d−1 . Since a
b
< 1

we have ak < 10d − 1, so the decimal expansion of ak requires at most d digits. Write
ak = c1 . . . cd, so x = c1...cd

10d−1 = .c1 . . . cd.

Finally, suppose that x can be written as a repeating decimal with block length `. The
above argument shows that x can be written as a fraction with denominator 10`− 1, so that
10` ≡ 1 mod b. This means d = ordb(10) satisfies d | `, so d ≤ `. Since we’ve shown that x
can be written as a repeating decimal with block length d, this shows it is the minimal such
length, and therefore the period. �

Now, we’ll tackle when x has a finite decimal expansion.

Theorem 0.8. Let x = a
b

with (a, b) = 1 be a rational number between 0 and 1. Then the
decimal expansion of x is finite if and only if the only possible prime factors of b are 2 and
5.

Proof. First, suppose that b = 2e5f for some e, f . Let d = max{e, f}. Then 10dx = ka for
some integer k, so x = ka

10d
says the decimal expansion of x is an integer with some number

of zeros before it, i.e. is finite.

Next, suppose that x has a finite decimal expansion, x = .c1c2 . . . cd. Then 10dx = c1 . . . cd,
so x = c1...cd

10d
. Canceling common factors from the numerator and denominator to reduce to

common form, this says the only prime factors of the b must divide 10d, i.e. must be 2 or
5. �

If we combine the two statements, we get the following theorem:

Theorem 0.9. Let x = a
b

where (a, b) = 1 be a rational number between 0 and 1. Depending
on the prime factorization of b, exactly one of the following holds:

(1) x has a finite decimal expansion, if and only if b = 2e5f for some e, f not both 0.
(2) x is purely periodic with period length ordb(10) if and only if (10, b) = 1.
(3) x is eventually periodic with an initial non-repeating block if and only if (10, b) 6= 1

and b is divisible by a prime other than 2 or 5. If b = 2e5fb′, then the period length
is ordb′(10).

Proof. Everything is immediate from what we have done so far, except the claim about the
period length in statement (3). Let k = max{e, f}, then 10kx = ma

b′
for some integer m.

Writing ma = b′q + r, with 0 ≤ r < b′, we have ma
b′

= q + r
b′

. Since (10, b′) = 1, this says
r
b′

is periodic of length ordb′(10), so 10kx has a purely periodic fractional part of period

ordb′(10). Dividing by 10k shifts the decimal point left by k places, so that x has an initial
non-repeating block (the digits of q) followed by a repeating block. �

By using modular arithmetic, we can improve the algorithm from our earlier example.
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Example 0.10. Let x = 1
303

. Since (10, 303) = 1, the above theorem says x is purely periodic
with period length d = ord303(10). By Euler’s theorem, ϕ(303) = ϕ(3)ϕ(101) = 200, so
d | 200. One can check manually that 104 ≡ 1 mod 303, so d = 4. We have 104−1 = 303 ·33,
so 1

303
= 33

104−1 = .0033.

Example 0.11. Let x = 1
200

. Then 200 = 23 · 52, so x has a finite decimal expansion. We
have max{3, 2} = 3, so 1000x = 5. Shifting the decimal to the left 3 places says x = .005.

Example 0.12. Let x = 926
8325

. We have 8325 = 32 · 52 · 37, so x has an initial non-repeating
block following by a repeating block. To compute the decimal expansion of x, we’ll use
a combination of the previous two methods. Multiply x by 100, so that 100x = 926·4

9·37 =
3704
333

= 11 + 41
333

. Since (10, 333) = 1, 41
333

is purely periodic. We find ϕ(333) = 216 so
d = ord333(10) | 216. One can check that 103 ≡ 1 mod 333, so d = 3. We have 103−1 = 333·3,
so 1

333
= 3

103−1 . This says 41
333

= 123
103−1 , so 41

333
= .123. Therefore, 100x = 11.123, so shifting

the decimal two places left gives x = .11123.

Example 0.13. As a final example, the fractions 1
7
, 2
7
, . . . , 6

7
are all purely periodic because

(10, 7) = 1. One can check that ord7(10) = 6, so that each of these fractions are periodic of
length 6. As you’re probably aware, these fractions are cyclic shifts of each other:

1

7
= .142857

2

7
= .285714

3

7
= .428571

4

7
= .571428

5

7
= .714285

6

7
= .857142

Why does this happen? Since ord7(10) = 6, the powers 10k mod 7 for 1 ≤ k ≤ 6 must all
be distinct. Since there are 6 non-zero elements mod 7, we actually hit all of them: for

any 1 ≤ m ≤ 6, there is k such that m ≡ 10k mod 7. This says that m
7

and 10k

7
have the

same fractional part, but the latter we can compute by just shifting the decimal point! To
illustrate this, suppose we wanted to compute 5

7
. One can check that 105 ≡ 5 mod 7, so 5

7

and 105

7
have the same fractional part. From 1

7
= .142857, we find 105

7
= 14285.714285 (we

know this repeats because the period length is independent of the numerator, so the first 6
digits must be the repeating block), which gives 5

7
= .714285.

Integers for which 1
n

have the cyclic shifting property listed above are quite rare: it turns
out, these are precisely the integers n such that ordn(10) = ϕ(n). The fractions with n ≤ 100
for which this holds are 1

7
, 1
17
, 1
19
, 1
23
, 1
29
, 1
47
, 1
49
, 1
59
, 1
61
, 1
97

. In general, finding such an n where
this condition holds is very hard!


