DECIMAL EXPANSIONS

TIM SMITS

In elementary school, you learn that a rational number x between 0 and 1 has either a finite
decimal expansion z = .cics . .. cq, or is eventually periodic, that is © = .b1bs ... b, C1C3 ... Cq.
The goal of this handout will be to explain this phenomenon, and determine algorithms for
determining decimal expansions. Surprisingly, the key to this will be Euler’s theorem:

Theorem 0.1. Let a,m be positive integers with (a,m) = 1. Then a®™ = 1 mod m.

We’ll start by showing that rational numbers are precisely those with eventually periodic
decimal expansions.

Theorem 0.2. Let x be a real number with 0 < x < 1. Then x is rational if and only if the
decimal expansion of x is eventually periodic.

Proof. First, suppose that  is rational. Write x = ¢ with (a,b) = 1, and suppose the decimal

expansion of x is ¢ = .cicacs . ... Then 10z = cics . .. Cp.Chyq - . .. By the division algorithm,
write 10¥a = bg, + r, where 0 < r, < b. Thus, cicy...cp.chop1 = 10F2 = % = qx + %’“,
so that g = ¢1...c; and %‘“ = .Cpi1Cgao.... Since there are only finitely many possi-
ble values for ri, there exist some integers m,n with m < n such that r,, = r,, so that

Cn+1Cm42 - -+ = .Cn41Cna2 - - .. T'his says the decimal expansion of x is .cicy ... Cry1 - - Cp.

Next, assume that x = .biby...b,,¢1...¢q. Then 10mz = by...b,.Cc1...¢q. Therefore
if we can show ¢;...¢g is rational, we're done, as 10™x will then be an integer plus a
rational number, and therefore solving for x says x is rational. Set y = .¢;...¢4. Then
10% = ¢;...cqc1...Cq, 50 (104 = 1)y = ¢1...cq says y = 574, so that y is rational as

desired. O

Saying the decimal expansion is finite means that the repeating part is a block of 0’s, so
we really have proved what we wanted: (the repeating block is either all 0’s or it isn’t). Note
that the above proof is constructive: given a rational number, it gives us an algorithm for
computing it’s decimal expansion, and given a decimal expansion, it tells us what rational
number it comes from.

Example 0.3. Let x = .11123. Then 100z = 11.123, so we need to compute y = .123. We

have 1000y = 123.123, so 999y = 123 says y = i22. Therefore, 100z = 11 + 128 = 11112 ",

999" 999 999
p— U2 _ 926
99900 ~ 8325

Example 0.4. Let z = 3—(1)3. To compute the decimal expansion of x, we follow the proof:
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10" -1 =303-0+ 10
10% -1 =303-0+ 100
10%-1=303-3+91
10" -1=303-33+1
10° -1 =303 - 330 4 10
We have found two integers m and n with r,, = r,, namely, m = 1 and n = 5. This says
T = .c1Cac3C4C5. We can now read off the digits by looking at the remainders:
caa=q =0
10c1+co=q=0 = ¢ =0
100c; +10cs +c3=qg3 =3 — c3=3
1000¢; + 100¢o + 10c3 + ¢4 = g4 =33 = ¢4, =3
10000¢y 4 1000¢o 4 100c3 + 10c4 +¢c5 = q5 = 330 = ¢5 =0

Therefore, x = .00330 = .0033.

This algorithm is not terribly useful: the output for 3—(1)3 had an initial non-repeating block,

however we could actually write it as a purely repeating decimal!

Our next goal will be to determine whether a rational number x = ¢ has a finite decimal
expansion, or an eventually periodic decimal expansion (with non-zero repeating block), and
to determine a better algorithm for computing the decimal expansion. The key step in our
proof was that there are finitely many remainders upon division by b, so that r,, = r, for
some integers m < n. Translated into a statement about modular arithmetic, there are
integers m, n such that 10™ = 10™ mod b. If 10 is invertible mod b, this is the same thing as
saying 10"~ = 1 mod b, so that there is a solution to 10 = 1 mod b.

For any a,m with (a,m) = 1, Euler’s theorem tells us that a*™ = 1 mod m. This says
there is some integer d with a? = 1 mod m. We give the smallest such d a special name:

Definition 0.5. Let (a,m) = 1. The order of a mod m, denoted ord,,(a) is the smallest
integer d such that a? = 1 mod m.

Example 0.6. ord;o(7) = 4 because 7* = 1 mod 100 and 4 is the smallest such integer with
this property.

The following fact about orders will be very useful for us. For a proof, see the week 5
discussion notes.

Proposition 1. a* = 1 mod m if and only if k | ord,,(a).

We'll first tackle the case where x has a purely periodic decimal expansion, i.e. x =
.C1...Cq.

Theorem 0.7. Let x = § with (a,b) = 1 be a rational number between 0 and 1. Then the
decimal expansion of x is purely periodic if and only if (10,b) = 1. In particular, the period
length is given by ordy(10).
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Proof. First, suppose that x = ... ¢ is purely periodic. Then 10% = cicy...cq.C1 .. Cq,
sox = &= Since 107 —-1=1 mod 10, the denominator remains co-prime to 10 even after
cancehng common factors with the numerator.

Now suppose that (10,b) = 1, and let d = ord,(10). Then 10¢ = 1mod b, so 10¢ — 1 is

a multiple of b. Write 10 — 1 = bk for some k, so that z = 7= % = 10d 7. Since § <1

we have ak < 10? — 1, so the decimal expansion of ak requires at most d digits. erte
ak =cy...cq, 80 x = fé;i'—'_c‘{:.cl...cd.

Finally, suppose that x can be written as a repeating decimal with block length ¢. The
above argument shows that # can be written as a fraction with denominator 10* — 1, so that
10° = 1 mod b. This means d = ord,(10) satisfies d | £, so d < ¢. Since we’ve shown that x
can be written as a repeating decimal with block length d, this shows it is the minimal such
length, and therefore the period. [l

Now, we’ll tackle when x has a finite decimal expansion.

Theorem 0.8. Let x = § with (a,b) = 1 be a rational number between 0 and 1. Then the
decimal expansion of x is finite if and only if the only possible prime factors of b are 2 and

D.

Proof. First, suppose that b = 2¢5/ for some e, f. Let d = max{e, f}. Then 10% = ka for

some integer k, so x = 1%‘3 says the decimal expansion of z is an integer with some number

of zeros before it, i.e. is finite.

Next, suppose that z has a finite decimal expansion, = .cicy . ..cg. Then 10% = ¢ .. . ¢4,
so x = <=, Canceling common factors from the numerator and denominator to reduce to
common form, this says the only prime factors of the b must divide 109, i.e. must be 2 or

d. U

If we combine the two statements, we get the following theorem:

Theorem 0.9. Let x = § where (a,b) =1 be a rational number between 0 and 1. Depending
on the prime factorization of b, exactly one of the following holds:

(1) x has a finite decimal expansion, if and only if b = 2¢57 for some e, f not both 0.

(2) x is purely periodic with period length ordy(10) if and only if (10,b) = 1.

(3) z is eventually periodic with an initial non-repeating block if and only if (10,0) # 1
and b is divisible by a prime other than 2 or 5. If b = 2°571 | then the period length
is ordy (10).

Proof. Everything is immediate from what we have done so far, except the claim about the
period length in statement (3). Let k = max{e, f}, then 10*x = o for some integer m.
Writing ma = 0'q 4 r, with 0 < r < b, we have 52 = ¢ + . Since (10,0") = 1, this says
# is periodic of length ordy(10), so 10¥z has a purely periodic fractional part of period
ordy (10). Dividing by 10* shifts the decimal point left by k places, so that z has an initial

non-repeating block (the digits of ¢) followed by a repeating block. 0

By using modular arithmetic, we can improve the algorithm from our earlier example.
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Example 0.10. Let x = ﬁ. Since (10, 303) = 1, the above theorem says x is purely periodic
with period length d = ordsp3(10). By Euler’s theorem, ¢(303) = ¢(3)¢(101) = 200, so
d | 200. One can check manually that 10* = 1 mod 303, so d = 4. We have 10* —1 = 30333,

SO 3—(1)3 = 104 = .0033.

Example 0.11. Let x = 00 Then 200 = 23 - 5%, so x has a finite decimal expansion. We
have max{3,2} = 3, so 1000z = 5. Shifting the decimal to the left 3 places says x = .005.

Example 0.12. Let z = 892265 We have 8325 = 3%-5%- 37, so x has an initial non-repeating

block following by a repeating block. To compute the decimal expansion of x, we’ll use
a Combination of the previous two methods. Multiply = by 100, so that 100z = % =
S0 = 11 + 4=, Since (10,333) = 1, o is purely periodic. We find ¢(333) = 216 so
d= ord333(10) | 216. One can check that 103 = 1 mod 333, so d = 3. We have 103—1 = 333:3,

SO % = 03 7. This says % = 153231, SO % = .123. Therefore, 100z = 11.123, so shifting

the decimal two places left gives z = .11123.

Example 0.13. As a final example, the fractions %, %, ceey g are all purely periodic because

(10,7) = 1. One can check that ord;(10) = 6, so that each of these fractions are periodic of
length 6. As you're probably aware, these fractions are cyclic shifts of each other:
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Why does this happen? Since ord;(10) = 6, the powers 10¥ mod 7 for 1 < k < 6 must all
be distinct. Since there are 6 non-zero elements mod 7, we actually hit all of them: for
any 1 < m < 6, there is k such that m = 10¥ mod 7. This says that Z and g have the
same fractional part, but the latter we can compute by just shifting the decimal point! To
illustrate this, suppose we wanted to cornpute 5. One can check that 10° = 5 mod 7, so 2

and 1(; have the same fractional part. From 1 z = 142857, we find 10 = 14285.714285 (We
know this repeats because the period length is mdependent of the numerator so the first 6
digits must be the repeating block), which glves 5 = 714285.

Integers for which % have the cyclic shifting property listed above are quite rare: it turns
out, these are precisely the integers n such that ord,, (10) ©(n). The fractions with n < 100
for which this holds are £, &+ & L L L - =& L L In general, finding such an n where
this condition holds is very hard!



