Worksheet 20

Problems marked with a (*) are eligible for presentations. (You must present all parts.)

- 1. What happens when the derivative condition in Hensel's lemma is not met? Suppose that $f(c) \equiv 0 \mod p$ and $f'(c) \equiv 0 \mod p$. Let r be a lift of $c \mod p$ to a congruence class mod p^2 . Prove there are only two possibilities: either all such lifts are roots of $f(x) \mod p^2$, or no such lift is a root mod p^2 .
- 2. (*) Let a be an integer and p a prime such that gcd(a, p) = 1. Set f(x) = ax 1.
 - (a) Use Hensel's lemma to find a recursive formula for the solution to $ax \equiv 1 \mod p^k$ for $k \ge 1$.
 - (b) Use your formula to compute the inverse of $5 \mod 17^3$.
- 3. (*) Let $f(x) = x^3 1$. Note that the solutions to $f(x) \equiv 0 \mod 7$ are $x \equiv 1, 2, 4 \mod 7$.
 - (a) Use Hensel's lemma to compute the lift of 2 mod 7 that solves $f(x) \equiv 0 \mod 7^4$.
 - (b) Without doing Hensel's lemma a second time, explain how one could easily find the lift of 4 mod 7 that solves $f(x) \equiv 0 \mod 7^4$. (*Hint: how does* $x^3 1$ factor?)
- 4. (*) Let $f(x) = x^4 + 2x + 36$. Find all solutions to the congruence equation $f(x) \equiv 0 \mod 4375$ (Note: $4375 = 5^4 \cdot 7$).
- 5. Find all solutions to $f(x) \equiv 0 \mod 2^n$ for $n \ge 1$, where $f(x) = x^2 + 2x + 5$.
- 6. Make a diagram showing which lifts of $f(x) = x^4 7x^3 + 2x^2 + 2x + 1$ are solutions to $f(x) \equiv 0 \mod 3^n$ for n = 1, 2, 3, 4, 5. Any patterns?