Worksheet 19

Problems marked with a (*) are "key results".

- 1. (*) Prove that $\sum_{d|n} \varphi(d) = n$. (*Hint: start by proving it for primes first.*)
- 2. (*) Recall from worksheet 18 that for prime p and positive integer d, $N_p(d)$ denotes the number of elements of order d in $(\mathbb{Z}/p\mathbb{Z})^{\times}$. Prove that $N_p(p-1) > 0$, i.e. $(\mathbb{Z}/p\mathbb{Z})^{\times}$ always has a generator.

One important consequence of always having a generator mod p is as follows. Fix a prime p and let g be a generator of $(\mathbb{Z}/p\mathbb{Z})^{\times}$. Then for any $[a] \in (\mathbb{Z}/p\mathbb{Z})^{\times}$, we have $a \equiv g^k \mod p$ for integer $k \geq 0$. By what we know about orders, there is a unique such choice of k with $0 \leq k \leq p-1$. The **logarithm** of [a] relative to g is denoted $\log_q(a)$ and is defined by $\log_g(a) = k$.

3. Let p be a prime and let g be a generator mod p. Prove the following properties of logarithms:

- (a) $\log_q(1) = 0.$
- (b) $\log_q(ab) \equiv \log_q(a) + \log_q(b) \mod p 1.$
- (c) $\log_q(a^k) \equiv k \cdot \log_q(a) \mod p 1.$
- (a) Show that 3 is a generator mod 17, and create a table of log₃(a) for [a] ∈ (Z/17Z)×. Use your table of logarithms to help you solve the congruence 6x¹² ≡ 11 mod 17.
 - (b) Solve the congruence $7^x \equiv 6 \mod 17$.
- 5. Solve problems 7 and 5 from worksheets 17 and 18 respectively if you haven't done so already. They'll be very helpful for Wednesday!