Worksheet 18

Problems marked with a (*) are "key results".

- 1. (*) Let $f(x) \in (\mathbb{Z}/p\mathbb{Z})[x]$ be a non-constant polynomial of degree d. Prove that f(x) has at most d roots in $\mathbb{Z}/p\mathbb{Z}$.
- (a) (*) Let d | p − 1, and let N_p(d) denote the number of elements of (Z/pZ)[×] of order d. Prove that if N_p(d) > 0, then N_p(d) = φ(d). That is to say, if there is an element of order d then there are precisely φ(d) of them.
 - (b) Suppose I tell you that 5 is a generator mod 73. Compute the total number of generators mod 73 and write down a full list of generators.
- 3. (a) Let p > 2 be a prime. Show that a is a generator mod p if and only if $a^{(p-1)/q} \not\equiv 1 \mod p$ for all prime divisors q of p-1.
 - (b) Use part (a) to prove that 3 is a generator mod 31.
- 4. (a) Find generators of $(\mathbb{Z}/13\mathbb{Z})^{\times}$ and $(\mathbb{Z}/17\mathbb{Z})^{\times}$.
 - (b) Solve the congruence equation $x^3 \equiv 5 \mod 13$.
 - (c) Solve the congruence equation $4^x \equiv 13 \mod 17$.
- 5. Show that $x^2 \equiv 2 \mod 7^n$ has a solution for all $n \ge 1$.