Worksheet 17

Problems marked with a (*) are "key results".

- 1. (*) Let a, n, k be integers with n > 1 and $k \ge 1$. Prove that $\operatorname{ord}_n(a^k) = \frac{\operatorname{ord}_n(a)}{\gcd(\operatorname{ord}_n(a), k)}$.
- (a) Create a table of all elements of (Z/61Z)[×] and their orders. Does every possible order appear as the order of some element? How many element of each order are there?
 - (b) Do the same thing for $(\mathbb{Z}/90\mathbb{Z})^{\times}$. What's different? The same?
 - (c) Repeat this for any other values of n that your heart desires. See if you can find any patterns!

The next few problems concern themselves with polynomials. Recall that when R is one of the sets of numbers we care about $(\mathbb{Z}, \mathbb{Z}/n\mathbb{Z}, \mathbb{Q}, \text{ etc.})$ that R[x] denotes the set of all polynomials with coefficients in R in the variable x. The **degree** of a polynomial $f(x) \in R[x]$ is denoted by $\deg(f)$ and defined to be the largest exponent of the non-zero terms in the polynomial. Polynomials add and multiply together in the way you are familiar with from middle school.

- 3. Let $f(x), g(x) \in (\mathbb{Z}/5\mathbb{Z})[x]$ with $f(x) = [4]x^3 + [2]x^2 + x + [3]$ and $g(x) = [3]x^4 + [3]x^3 + [3]x^2 + x + [4]$. Compute f(x) + g(x) and f(x)g(x). Do the same thing but now view $f(x), g(x) \in (\mathbb{Z}/6\mathbb{Z})[x]$.
- 4. (a) (*) Let $f(x), g(x) \in R[x]$ be polynomials, where $R = \mathbb{Z}, \mathbb{Q}, \mathbb{Z}/p\mathbb{Z}$ for prime p. Prove that $\deg(fg) = \deg(f) + \deg(g)$. However, show that this need not be true when $R = \mathbb{Z}/n\mathbb{Z}$ for composite n.
 - (b) Come up with conditions on the polynomials $f(x), g(x) \in (\mathbb{Z}/n\mathbb{Z})[x]$ to guarantee that $\deg(fg) = \deg(f) + \deg(g)$.
- 5. (*) Let p be a prime and let $f(x) \in (\mathbb{Z}/p\mathbb{Z})[x]$ be a non-constant polynomial of degree d. Prove that f([a]) = [0] if and only if x - [a] is a factor of f(x).
- 6. (a) For prime p, what are the roots of the polynomial $x^p x \in (\mathbb{Z}/p\mathbb{Z})[x]$?
 - (b) $x^3 x$ vanishes at every element of $\mathbb{Z}/6\mathbb{Z}$. Is there a degree 2 polynomial with that property?
- 7. Find all solutions to $x^2 \equiv 2 \mod 7$. How many are there? Use that information to find all solutions to $x^2 \equiv 2 \mod 49$. How many are there? How about solutions mod 7³ and 7⁴? Any conjectures?