Worksheet 15

Problems marked with a (*) are "key results".

- 1. For $[a] \in (\mathbb{Z}/n\mathbb{Z})^{\times}$, let f be the function f from Monday's worksheet. That is, $f([x]) = [a] \cdot [x]$ for $[x] \in (\mathbb{Z}/n\mathbb{Z})$.
 - (a) What can you say about the products $\prod_{[b] \in (\mathbb{Z}/n\mathbb{Z})^{\times}} [b]$ and $\prod_{[b] \in (\mathbb{Z}/n\mathbb{Z})^{\times}} f([b])$?
 - (b) (*) Let a, n be integers with gcd(a, n) = 1 and n > 1. Prove that $a^{\varphi(n)} \equiv 1 \mod n$. (*Hint: use the previous part.*)
 - (c) Let p be a prime. Prove that for any positive integer a with $p \nmid a, a^{p-1} \equiv 1 \mod p$.
- 2. For any integers a, n with gcd(a, n) = 1 and n > 1, what does the result of 1(b) tell you about the size of $ord_n(a)$?
- 3. (*) Let a, n be integers with gcd(a, n) = 1 and n > 1. Prove that for integers ℓ, k we have $a^k \equiv a^\ell \mod n$ if and only if $k \equiv \ell \mod \operatorname{ord}_n(a)$.
- 4. (Some various computations)
 - (a) Compute $3^{201} \mod 11$.
 - (b) Compute $2^{2^{15}} \mod 23$.
 - (c) Without running the Euclidean algorithm, find the inverse of 3 mod 118.
 - (d) Find all primes p such that $\operatorname{ord}_p(3) = 12$.
- 5. Let a, n be integers such that gcd(a, 91) = gcd(n, 91) = 1. Prove that $n^{12} a^{12}$ is divisible by 91. (Note that $91 = 7 \cdot 13$.)
- 6. (a) Find all solutions to $x^5 \equiv 11 \mod 18$. (*Hint: what does 1(b) tell you?*)
 - (b) Suppose you have a congruence of the form $x^k \equiv b \mod n$. What conditions do you have to impose on k, b, n to generalize you method from part (a)? Come up with a conjecture, and try to prove it!