Worksheet 14

Problems marked with a (*) are "key results".

- 1. (*) Let n > 1 and let $[a] \in (\mathbb{Z}/n\mathbb{Z})^{\times}$. Consider the function $f : \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ defined by $f([x]) = [a] \cdot [x]$.
 - (a) What can you say about f? Is it injective? Surjective? Bijective?
 - (b) Set $\text{Im}(f) = \{f([x]) : [x] \in \mathbb{Z}/n\mathbb{Z}\}$, the set of outputs of the function f. How do the sets $\mathbb{Z}/p\mathbb{Z}$ and Im(f) compare? Are they the same? Different?
- 2. Let $a, n \in \mathbb{Z}$ with n > 1 and gcd(a, n) = 1. Prove there exists some positive integer k such that $a^k \equiv 1 \mod n$. (*Hint: what happens if two different powers of a are the same mod n?*)

For $a, n \in \mathbb{Z}$ with n > 1 and gcd(a, n) = 1, the **order of a mod n** is defined as the smallest positive integer k such that $a^k \equiv 1 \mod n$. We denote this as $ord_n(a)$. For example, $ord_4(3) = 2$ because $3^2 \equiv 1 \mod 4$ and 2 is the smallest positive integer with this property.

The above problem says that $\operatorname{ord}_n(a)$ always exists, and translated into a statement about $\mathbb{Z}/n\mathbb{Z}$, this says for any $[a] \in (\mathbb{Z}/n\mathbb{Z})^{\times}$ we can find an integer k such that $[a]^k = [1]$ in $\mathbb{Z}/n\mathbb{Z}$. The smallest such positive integer k with this property is called the order of [a], and we'll use the same notation to denote it.

- 3. (a) For n = 7, create a table of the different powers of [a] for the various $[a] \in (\mathbb{Z}/n\mathbb{Z})^{\times}$ and use your table to compute $\operatorname{ord}_n(a)$ for a = [1], [2], [3], [4], [5], [6]. What patterns do you notice? Any conjectures?
 - (b) For n = 8, create a table of the different powers of [a] for the various $[a] \in (\mathbb{Z}/n\mathbb{Z})^{\times}$ and use your table to compute $\operatorname{ord}_n(a)$ for a = [1], [3], [5], [7]. What patterns do you notice? Any conjectures?
 - (c) Do the same thing for any other values of n that your heart desires. General pattern finding advice: first see how things behave for various primes, then prime powers, then products of primes. You could spend a very long time making tables and finding different patterns there are *a lot* of interesting ones that you could find by doing this!
- 4. (*) Let $a, n \in \mathbb{Z}$ with n > 1 and gcd(a, n) = 1. Prove that $a^k \equiv 1 \mod n$ if and only if $ord_n(a) \mid k$.
- 5. (a) Suppose you know for some integer n > 1 that $3^{2088} \equiv 1 \mod n$ and $3^{4306} \equiv 1 \mod n$. What can you say about $\operatorname{ord}_n(3)$?
 - (b) Solve the equation $x^5 \equiv 2 \mod 7$. Can you find a way to do this without just plugging in all elements of $\mathbb{Z}/7\mathbb{Z}$? (You might find your table from 3(a) to be useful here.)