Worksheet 13

Problems marked with a (*) are "key results".

1. (*)(Chinese Remainder Theorem) If m, n > 1 are co-prime, prove the map $f : \mathbb{Z}/m\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ given by $f([a]_{mn}) = ([a]_m, [a]_n)$ is a bijection. Here, $[a]_k$ denotes the congruence class of a mod k. (You should first make sure this is actually a function, i.e. that it doesn't depend on the choice of representative for the congruence class!)

Our first application of the Chinese Remainder Theorem will be studying the function $\varphi(n)$.

- 2. (*) Suppose that m, n > 1 are relatively prime integers.
 - (a) Prove that the restriction f' of f to the units mod mn gives a bijection $f' : (\mathbb{Z}/m\mathbb{Z})^{\times} \to (\mathbb{Z}/m\mathbb{Z})^{\times} \times (\mathbb{Z}/n\mathbb{Z})^{\times}$.
 - (b) Explain how this shows $\varphi(mn) = \varphi(m) \cdot \varphi(n)$.
- 3. The above problem shows that $\varphi(mn) = \varphi(m)\varphi(n)$ when m and n are relatively prime. How much do they differ when they aren't? Compute $\varphi(mn)$ and $\varphi(m)\varphi(n)$ for all m, n with mn < 20. Any conjectures?
- 4. (a) Using your formula from Monday's worksheet and problem 2, write down a formula for $\varphi(n)$ in terms of the prime factorization of n.
 - (b) Compute $\varphi(100)$, $\varphi(360)$, and $\varphi(7000)$.
- 5. (a) Show that $\varphi(n)$ is even for n > 2.
 - (b) For which values of n is $\varphi(n)$ divisible by 4? Divisible by 8? (The formula from 4(a) will be helpful here.)

6. For a function $f : \mathbb{N} \to \mathbb{Z}$ we write $\sum_{d|n} f(d)$ to denote the sum over all positive divisors of n. For example, if n = 6 the sum is f(1) + f(2) + f(3) + f(6). Compute $\sum_{d|n} \varphi(d)$ for n up to 12.

Any conjectures?