Worksheet 12

Problems marked with a (*) are "key results".

- 1. Which of the following rules define functions? Of the functions, which are injective? Surjective? Bijective? Can you find an inverse function, and if so, what is it?
 - (a) $f : \mathbb{Z} \to \mathbb{Z}/15\mathbb{Z}$ where f(n) = [n].
 - (b) $f : \mathbb{Z}/2\mathbb{Z} \to \mathbb{Z}/3\mathbb{Z}$ where f([n]) = [n].
 - (c) $f: \mathbb{Z}/p\mathbb{Z} \to \mathbb{Z}/p\mathbb{Z}$ where $f([n]) = [n]^{-1}$. (Remember, p always denotes a prime!)
 - (d) $f : \mathbb{Z}/4\mathbb{Z} \to \mathbb{Z}/2\mathbb{Z}$ where f([n]) = [n].
 - (e) $f: \mathbb{Q} \to \mathbb{Q}$ where $f(\frac{a}{b}) = \frac{a+1}{b+1}$.
 - (f) $f: \mathbb{Z}/11\mathbb{Z} \to \mathbb{Z}/11\mathbb{Z}$ where $f([n]) = \sqrt[3]{[n]}$.
 - (g) $f : \mathbb{Z} \to (\mathbb{Z}/p\mathbb{Z})[x]$ where f(n) = [n]x.
 - (h) $f : \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ where f([n]) = [2n]. (Here, n > 1 is arbitrary. Your answer might depend on what it is!)
- 2. The Cartesian product of two sets X and Y, denoted $X \times Y$, is defined by $X \times Y = \{(x, y) : x \in X, y \in Y\}$.
 - (a) Let $X = \{a, b, c, d, e\}$ and $Y = \{1, 2, 3\}$. Explicitly write down all the elements of $X \times Y$.
 - (b) In general, when X and Y are finite, how many elements does $X \times Y$ have?
 - (c) Write down all the elements of $\mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ for various values of m and n. Is there a way to make sense of addition in $\mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$? What about multiplication?
- 3. (*) Let X and Y be finite sets and $f: X \to Y$ a function. What can you say about the sizes of X and Y when f is injective? Surjective? Bijective? Give proofs in each case.
- 4. (Hard) When X and Y are not finite sets, it becomes much harder to come up with a notion of "size".
 - (a) Is there a bijection $f : \mathbb{N} \to \mathbb{Z}$? If so, find one. If not, explain why.
 - (b) Is there a bijection $f : \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$? If so, find one. If not, explain why.
- 5. (*) Prove that a function $f: X \to Y$ is invertible if and only if f is a bijection.
- 6. Suppose that $f : X \to Y$ and $g : Y \to Z$ are functions, and let $g \circ f : X \to Z$ be their composition. If f and g are both injective, must $g \circ f$ be injective? What can you say about $g \circ f$ when f and g are surjective? Bijective?