Worksheet 10

Problems marked with a (*) are "key results".

- 0. Finish any of the worksheet problems 1 − 3 from last time that you didn't get to − they're all important!
- 1. (a) (*) Prove that $ax \equiv 1 \mod n$ is solvable if and only if gcd(a, n) = 1. This says that $a \in \mathbb{Z}/n\mathbb{Z}$ is invertible if and only if gcd(a, n) = 1.
 - (b) Knowing that $2^{-1} \equiv 7 \mod 13$, how could you solve the congruence $2x \equiv 11 \mod 13$?
 - (c) Describe an algorithm for computing the inverse of a mod n. (*Hint: this is a very familiar computation by this point!*)
 - (d) Is the congruence $24x \equiv 57 \mod 215$ solvable? If so, find the solution. If not, explain why.
- 2. When p is a prime, $\mathbb{Z}/p\mathbb{Z}$ has a nicer structure than $\mathbb{Z}/n\mathbb{Z}$ for composite n.
 - (a) (*) Prove the *cancellation law*, that if $ab \equiv ac \mod n$ and gcd(a, n) = 1, that $b \equiv c \mod n$. (In particular, this shows that cancellation always works mod p).
 - (b) (*) On the last worksheet, you saw that in general, $x^2 = 1$ may have more than two solutions in $\mathbb{Z}/n\mathbb{Z}$ and you can possibly have ab = 0 with $a, b \neq 0$ in $\mathbb{Z}/n\mathbb{Z}$. Prove that when n is *prime*, this cannot happen. That is, prove that if $x^2 \equiv 1 \mod p$ then $x \equiv \pm 1 \mod p$ and if $ab \equiv 0 \mod p$ then $a \equiv 0 \mod p$ or $b \equiv 0 \mod p$.
- 3. On homework 2, you proved that for any odd integer n > 1, that $8 \mid n^2 1$. Give a new proof of this fact using modular arithmetic.
- 4. Find an integer x such that $x \equiv 1 \mod 3$ and $x \equiv 2 \mod 4$. How many more solutions can you find?
- 5. (a) Make a table of all the powers of 2 in Z/13Z (use WolframAlpha for the computation if you wish). What do you notice?
 - (b) Using your table, solve $x^2 = 10$ and $x^3 = 5$ in $\mathbb{Z}/13\mathbb{Z}$.