Worksheet 9

Problems marked with a (*) are "key results".

- 1. Write down addition and multiplication tables for $\mathbb{Z}/n\mathbb{Z}$ for various values of n, like n = 4, 5, 6, 7, 8. What observations do you notice? Are there similarities between these tables? Differences? See what you can come up with!
- 2. Go through the list of axioms for \mathbb{Z} and decide which ones still make sense in $\mathbb{Z}/n\mathbb{Z}$.
- 3. The point of this problem is to get a feeling for how the structure of $\mathbb{Z}/n\mathbb{Z}$ is very different than from that of \mathbb{Z} .
 - (a) Find a value of n and $a, b \in \mathbb{Z}/n\mathbb{Z}$ such that ab = 0 but $a \neq 0$ and $b \neq 0$.
 - (b) Find a value of n such that the equation $x^2 = 1$ has more than two solutions in $\mathbb{Z}/n\mathbb{Z}$.
 - (c) Find a value of n and an example of $a \in \mathbb{Z}/n\mathbb{Z}$ such that a has two different factorizations into prime integers in $\mathbb{Z}/n\mathbb{Z}$ of different lengths.
 - (d) Do you see any way of fixing the problems that arose in your previous examples?
- 4. We say that $a \in \mathbb{Z}/n\mathbb{Z}$ is **invertible** if there is $b \in \mathbb{Z}/n\mathbb{Z}$ such that ab = 1 in $\mathbb{Z}/n\mathbb{Z}$, or equivalently, that $ab \equiv 1 \mod n$. When b exists, we write $b = a^{-1}$ in $\mathbb{Z}/n\mathbb{Z}$, or if you prefer congruences, $b \equiv a^{-1} \mod n$.
 - (a) Is 2 invertible in Z/7Z? Is 3 invertible in Z/6Z? If so, find the inverse. If not, explain what goes wrong.
 - (b) Formulate a conjecture on when $a \in \mathbb{Z}/n\mathbb{Z}$ is invertible it should read something along the lines of " $a \in \mathbb{Z}/n\mathbb{Z}$ is invertible if and only if _____"