Worksheet 8

Problems marked with a (*) are "key results".

The first few problems deal with the basic properties of modular arithmetic, and show that it has very similar properties to usual arithmetic.

- 1. (*) Prove that there is a unique choice of r with $0 \le r < n$ such that $a \equiv r \mod n$.
- 2. (*) Let $a, b, c \in \mathbb{Z}$ be arbitrary, and fix n > 1. Prove the following:
 - (a) $a \equiv a \mod n$
 - (b) If $a \equiv b \mod n$ then $b \equiv a \mod n$.
 - (c) If $a \equiv b \mod n$ and $b \equiv c \mod n$, then $a \equiv c \mod n$.
- 3. (*) For any $a, a', b, b' \in \mathbb{Z}$ and fixed n > 1, prove the following:
 - (a) If $a \equiv a' \mod n$ and $b \equiv b' \mod n$ then $a \pm b \equiv a' \pm b' \mod n$.
 - (b) If $a \equiv a' \mod n$ and $b \equiv b' \mod n$ then $ab \equiv a'b' \mod n$.
 - (c) If $a \equiv b \mod n$ and $d \mid n$, then $a \equiv b \mod d$.
- 4. (*) Fix n > 1. For any $a, b \in \mathbb{Z}$ and $k \ge 1$, prove that if $a \equiv b \mod n$ then $a^k \equiv b^k \mod n$.

The remaining problems deal with computations using the above properties of modular arithmetic, to help you get a feeling for how they go.

- 5. Reduce the following mod n:
 - (a) 9284756 mod 8
 - (b) -181374 mod 29
 - (c) $2357 \cdot (9453 + 1294) 3284 \mod 7$
- 6. Show that 41 divides $2^{20} 1$ by following these steps. Explain why each step is true.
 - i. $2^5 \equiv -9 \mod 41$.
 - ii. $(2^5)^4 \equiv (-9)^4 \mod 41$.
 - iii. $2^{20} \equiv 81^2 \mod 41 \equiv (-1)^2 \mod 41$.
 - iv. $2^{20} 1 \equiv 0 \mod 41$.
- 7. Reduce $2^{50} \mod 7$.
- 8. Show that 39 divides $17^{48} 5^{24}$.
- 9. Find an integer x such that $5x \equiv 1 \mod 7$. Can you find x such that $6x \equiv 1 \mod 8$?