Math 11N Homework 6 Due Friday, February 18th, 2022

- 1. Solve the following systems of congruences. Your answer should be a single congruence class in each case: $x \equiv \mod$.
 - (a)

 $\begin{cases} x \equiv 6 \mod 8\\ x \equiv 3 \mod 9\\ x \equiv 8 \mod 11\\ x \equiv 7 \mod 13 \end{cases}$ $\begin{cases} x \equiv 10 \mod 12\\ x \equiv 4 \mod 15\\ x \equiv 14 \mod 50 \end{cases}$

(b)

- Note: the moduli here are *not* pairwise coprime, so you'll have to do something different than usual. (*Hint: factor each modulus and turn each single congruence into a system of congruences. Then you can eliminate the redundant ones.*)
- (c) Show that the system below does *not* have a solution.

$$\begin{cases} x \equiv 6 \mod{12} \\ x \equiv 9 \mod{15} \\ x \equiv 22 \mod{50} \end{cases}$$

Combined with the previous part, this demonstrates that the moduli not being pairwise coprime may or may not result in solutions to systems.

- 2. Prove for integers m, n > 1 that $\varphi(mn) = \varphi(m)\varphi(n)\frac{d}{\varphi(d)}$ where $d = \gcd(m, n)$.
- 3. (a) Find, with proof, all solutions to $\varphi(n) = 6$.
 - (b) Prove there is no solution to $\varphi(n) = 14$.

The goal of the remaining problems is finding solutions to the equation $x^2 = [1]$ in $\mathbb{Z}/N\mathbb{Z}$ for N > 1, which we know is equivalent to finding solutions to the congruence $x^2 \equiv 1 \mod N$.

- 4. Let p > 2 be prime and $k \ge 1$. Prove that $x^2 \equiv 1 \mod p^k$ if and only if $x \equiv \pm 1 \mod p^k$.
- 5. The case of p = 2 is more complicated.
 - (a) What are the solutions to $x^2 \equiv 1 \mod 2$? $x^2 \equiv 1 \mod 4$? $x^2 \equiv 1 \mod 8$?

- (b) Prove that for $k \ge 3$, $x^2 \equiv 1 \mod 2^k$ has exactly four solutions: $x \equiv \pm 1 \mod 2^k$, $x \equiv \pm 1 + 2^{k-1} \mod 2^k$. (*Hint: prove this by induction on k. If* $x^2 \equiv 1 \mod 2^k$, note that $x^2 \equiv 1 \mod 2^{k-1}$.)
- 6. To finish up, we need to find a way of gluing together our information. For an integer N > 1, let $S_N = \{[x] \in \mathbb{Z}/N\mathbb{Z}: [x]^2 = [1]\}$, that is, S_N is the set of solutions to the congruence $x^2 \equiv 1 \mod N$.
 - (a) Let m, n > 1 be relatively prime integers. Prove the map $f: S_{mn} \to S_m \times S_n$ given by $f([x]_{mn}) = ([x]_m, [x]_n)$ is a bijection. (*Hint: you'll want to use the Chinese Remainder Theorem to show the map is surjective!*)
 - (b) Let $N = 2^e p_1^{e_1} \dots p_k^{e_k}$ be the prime factorization of N. Set $N_2 = |S_{2^e}|$ and $N_{p_i} = |S_{p_i^{e_i}}|$. Write down a formula for the number of solutions to $x^2 \equiv 1 \mod N$ in terms of N_2 and N_{p_i} , and use your formula to compute the number of solutions to $x^2 = [1]$ in $\mathbb{Z}/N\mathbb{Z}$ for N = 60, 4410, 10!.
 - (c) Find all solutions to $x^2 \equiv 1 \mod 39188$. (Much like with the proof of the Chinese Remainder Theorem, your proof of part (a) will tell you how to do this!)