Math 11N Homework 5 Due Saturday, February 12th, 2022

- 1. (Computations) Do each of the following computations below. Show your work, don't just write the answer!
 - (a) Reduce $84526 \cdot 862967^3 448184 \cdot 591183^2 \mod 15$.
 - (b) Compute $1477^{-1} \mod 9235$.
 - (c) Reduce $1769^{234} \mod 31$.
 - (d) Reduce $1! + 2! + \ldots + 100! \mod 25$.
- 2. Prove that $\frac{1}{5}n^5 + \frac{1}{3}n^3 + \frac{7}{15}n$ is an integer for all $n \in \mathbb{Z}$.
- 3. This problem deals with divisibility tests for integers. Let $n = a_n \cdot 10^n + \ldots + a_1 \cdot 10 + a_0$ be the decimal expansion of n. For example, $123 = 1 \cdot 100 + 2 \cdot 10 + 3$.
 - (a) Prove that n is divisible by 3 if and only if $a_0 + a_1 + \ldots + a_n$ is divisible by 3. Show that a similar condition holds for divisibility by 9, but does not work for divisibility by 27.
 - (b) Prove that n is divisible by 11 if and only if $a_0 a_1 + a_2 + \ldots + (-1)^n a_n$ is divisible by 11.
 - (c) For $k \ge 1$, prove that n is divisible by 2^k if and only if the last k digits of n are divisible by 2^k . Show that a similar condition holds for powers of 5 as well.
- 4. This problem deals with solving linear equations in $\mathbb{Z}/n\mathbb{Z}$, which we know is the same as solving linear congruences mod n. Assume n > 1 is an integer, and that a, b are integers.
 - (a) Show that the congruence $ax \equiv b \mod n$ is solvable if and only if $gcd(a, n) \mid b$.
 - (b) If x_0 is a solution to $ax \equiv b \mod n$, prove that all the solutions to [a]x = [b] in $\mathbb{Z}/n\mathbb{Z}$ are $[x_0 + \frac{n}{\gcd(a,n)}k]$ for $k = 0, 1, \ldots, (a,n) 1$. (Remember: [x] denotes the congruence class of $x \mod n$, and that the elements of $\mathbb{Z}/n\mathbb{Z}$ are congruence classes, not numbers!)
 - (c) Solve the congruences $1723x \equiv 3574 \mod 4914$ and $126x \equiv 91 \mod 217$. Your answer should be a single congruence class in each case: $x \equiv \mod 2$.
 - (d) Write down the solutions to [1723]x = [3574] in $\mathbb{Z}/4914\mathbb{Z}$ and [126]x = [91] in $\mathbb{Z}/217\mathbb{Z}$.

In particular, this problems shows that it's possible for a linear equation in $\mathbb{Z}/n\mathbb{Z}$ to have more than one solution in $\mathbb{Z}/n\mathbb{Z}$, which is very different from how things work in \mathbb{Z} !

- 5. The goal of this problem is to demonstrate how working in $\mathbb{Z}/n\mathbb{Z}$ can detect obstruction to equations having integer solutions.
 - (a) Write down the perfect squares in $\mathbb{Z}/8\mathbb{Z}$ and perfect cubes in $\mathbb{Z}/9\mathbb{Z}$.
 - (b) Prove that $x^3 + y^3 + z^3 = 4$ has no integer solutions. For what other integers can you replace 4 with and have your same argument work?
 - (c) Prove that there are no integers m, n such that $3^m + 3^n + 1$ is a perfect square.
- 6. (a) Prove that if p is prime, then $(p-1)! \equiv -1 \mod p$ (Hint: try pairing up integers in the product in a useful way).
 - (b) Prove that if n > 4 is composite, then $(n-1)! \equiv 0 \mod n$.

Combining these two parts says than an integer is prime if and only if $n \nmid (n-1)!$. Of course, this is a very *bad* way of checking that an integer is prime, because (n-1)! gets very large, very fast!