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(a) Solve the equation 4* = 25 mod 59 (Hint: 2 is a generator mod 59.)
(b) Find all solutions to f(x) = 0 mod 6125 where f(x) = 2° — 22° — 35. (Note: 6125 = 53 - 72).

Solution:

(a) Note that 5 = 64 = 2° mod 59, and so we wish to solve the equation 4 = 2'2 mod 59,
ie. 22* = 212 mod 59. Since exponentiation only matters mod 58, we want to solve
22z = 12 mod 58. Dividing through by 2 yields x = 6 mod 29, so x = 6,35 mod 58 are the
solutions to 2z = 12 mod 58, and therefore the solutions to 4* = 25 mod 59. Explicitly,
this says our solutions are 4%, 435 mod 59.

(b) By the Chinese remainder theorem, solving f(z) = 0 mod 6125 is equivalent to solving
the system of equations f(z) =0 mod 5% and f(z) = 0 mod 7%

Let’s start with the first congruence. If r is a solution to f(z) = 0mod 5, then
f(r) = 0mod 5% and so in particular, we must have f(r) = 0mod 5. The solutions
to f(z) = Omod 5 are z = 0,2. We have f’(z) = 62° — 10z* and f/(0) = 0 mod 5,
f'(2) = 32 # 0mod 5. By Hensel’s lemma, the latter root lifts to a root mod 5 for
any k > 1, and therefore there is a single solution to f(x) = 0 mod 53, given by the lift
of the root 2. To figure this out, first let’s lift it to a root mod 25. Set ¢; = 2 and
co = 2+ bty. Then we wish to solve for t5 that makes f(cz) = 0 mod 25. We have
fle2) = f(2) + f/(2) - 5tz mod 25. We have f(2) = —35, and therefore dividing by 5 we
wish to solve —7+32t5, = 0 mod 5, i.e. 342t = 0 mod 5. This yields 3 = 1 mod 5, so we
may take co = 2+5-1 =7 mod 25. Now we want to lift again, but we actually don’t have
to: f(7) = 84000 which is divisible by 125, and therefore x = 7 mod 125. Note that 0
doesn’t lift up: f(5t2) = 0 mod 25 if and only if f(0)+ f'(0) -5t = 0 mod 25, which is the
same as saying that f(0) = 0 mod 25, which is clearly false. Therefore, 2 = 7 mod 125 is
the unique solution to f(z) = 0 mod 125.

Next, we do this procedure to find the roots of f(x) mod 49. The solutions to f(z) =
0 mod 7 are x = 0,2 mod 7 and again we have f'(0) = 0 mod 7 and f'(2) = 32 # 0 mod 7,
so there is a single root mod 49. Set ¢; = 2 and ¢o = 24 7to. We wish to solve for ¢5 that
makes f(cz) = 0 mod 49. We have f(ca) = f(2) + f/(2) - Tt mod 125. Plugging in, and
dividing by 7, we wish to solve —5+ 32t = 0 mod 7, i.e. 2+ 4¢3 = 0 mod 7. We see that
to = 3 mod 7 solves this equation, and so we can take co =2+ 7 -3 = 23 mod 49. Simi-
larly, 0 doesn’t lift up and so = 23 mod 49 is the unique solution to f(x) = 0 mod 49.

Therefore, by the Chinese remainder theorem, there is a single solution to f(z) = 0 mod
6125 given by x = 7 mod 125 and = = 23 mod 49. Solving this yields = 3257 mod 6125.




2. Prove that for any k& > 1, there are exactly p — 1 distinct elements of Z/p*Z that satisfy
zP~t =[1].

Solution: Consider the polynomial f(x) = 2P~! — 1 € Z[z]. By Fermat’s little theorem, we
have f(c;) =0 mod p for ¢; = i with 1 <7 < p—1, and f'(¢;) = (p—1)? "> = =¥ % 0 mod p.
These are all the roots of f(z) mod p, because a degree p— 1 polynomial cannot have more than
p—1 roots mod p. By Hensel’s lemma, each root lifts up to a root of f(z) mod p* for any k > 1.
This says f(z) has at least p— 1 roots mod p¥. On the other hand, if r is a root of f(z) mod p*
then f(r) = 0 mod p*, so certainly f(r) = 0 mod p. In particular, 7 = ¢; mod p for some choice
of ¢ and therefore by the uniqueness of Hensel’s lemma, r must be some lift of ¢;. This says
there are at most p — 1 roots, so there are exactly p — 1 roots of f(x) mod p*. Translating into
a statement about Z/p*Z, this says there are exactly p — 1 solutions to 2P~ = [1] as desired.

3.

(a) Let p be an odd prime, and let a, k be integers with p { a. Prove that ¥ = a mod p is solvable
if and only if a" =1 mod p, where d = ged(k,p —1). (Hint: work in terms of a generator

9-)
(b) Find all solutions to 2% = 6 mod 101.

Solution:

(a) Let g be a generator mod p. Any solution to ¥ = a mod p may be written as z =
g" mod p for some r, and we may write a = ¢° mod p for some s. Therefore, solving
the equation z¥ = @ mod p is the same as solving the equation ¢"* = ¢* mod p for r.
Since exponentiation only matters mod p — 1, this equation is solvable if and only if
rk = smod p — 1. From homework 3, we know such an equation is solvable if and only
if d | s, where d = ged(k,p — 1). Now, we will prove d | s if and only if " =1mod D,
and then we’ll be done. Suppose that d | s. Then P (gs)% = (¢ 14 = 1 mod p.
Now conversely, suppose that a®T =1 mod p. This means that gsp%dl = 1 mod p. Since
g is a generator mod p, we have ord,(g) = p — 1, and so in particular, this is possible if
and only if p—1 | s%. This happens if and only if there is ¢ such that s% =(p—1)L.
Rearranging, we see this is equivalent to saying that s = d¢ for some ¢, i.e. d | s, which
is what we wanted.

(b) First, note that 2 is a generator mod 101 (this can be checked by hand), so 6 = 2° mod 101
for some s. First, let’s compute ordig;(6). One can check by hand without too much
trouble that ordig;(6) = 10. This says ordig;(2") = 10, and so using the key result that
tells us the order of a power, we must have % = 10. This says ged(r, 100) = 10,

and so r is an odd multiple of 10. We have 2'° = 14 mod 101, and so checking odd powers
of 14 we find 27° = 14”7 = 6 mod 101. Therefore, we wish to solve 2°" = 27° mod 101,
which is equivalent to solving 57 = 70 mod 100. Dividing everything by 5, this is the same
as saying r = 14 mod 20, so r = 14,34,54,74,94 mod 101 are the 5 different solutions
to 5r = 70 mod 100. This yields x = 2'4,234,254 27 294 mod 101 as our solutions to
2% = 6 mod 101.

4. On homework 5, you proved for prime p that (p — 1)! = —1 mod p. Using the fact that there is
a generator mod p, give an alternate proof of this result.
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Solution: Let ¢ be a generator mod p. Then for any 1 < a < p — 1, we have a = ¢* mod p

for some unique choice 1 < k < p — 1. Taking the product over all such values of a is the same
thing as taking the product over all such values of k, so we have (p—1)! = Hi;} a= Hz;i g =

glioik = 2= hod p. Now, gp(p;) = (¢"% )P mod p and because g is a generator, we must

have gp%l = —1 mod p, because 9112;1 satisfies 22 = 1 mod p which we know has as it’s only
—1

solutions £ = 41 mod p. Finally, since p is odd, (ng)P = (—1)» = —1 mod p, so piecing

everything together yields (p — 1)! = —1 mod p as desired.

5. Let p be an odd prime. Prove that —1 is a square mod p if and only if p = 1 mod 4.

Solution: The forward direction was proven in problem 6(a) of homework 7. For the other

direction, suppose that p = 1 mod 4 and let g be a generator mod p. Then (ngfl)2 = g% =
—1 mod p, which says that —1 is a square mod p.

6. Let p be an odd prime and let k£ > 0 be an integer. Prove that

Omodp p—11k

ok (p-1DF=
(p—1) —1lmodp p—1|k

Solution: Let g be a generator mod p. Then for any 1 < a < p—1 there is a unique choice of i
with 1 <4 < p—1 such that ¢ = ¢* mod p. Therefore, taking the sum over all such powers of a is
the same as taking the sum over all such powers of g: Zz;i ak = Zf;ll (g")F = Zf;ll ¢"" mod p.
If p—1 |k, then ¢g* = 1 mod p, and so the sum is Zf;lll =p-—1= —1qup. Ifp—1t¢tk,
Then reco.gnizing the sum as a geometric series by writing it as Zf;ll (¢*)" mod p, we find
SN = ((6%)P — ¢%)(¢F — 1) mod p. (note: we can divide by ¢¥ — 1 mod p precisely
when p — 1 { k, and so the formula for the sum of a geometric series makes sense). Since
(g%)? = g* mod p by Fermat’s little theorem, this yields S?~'(g*)* = 0 mod p. This proves
what we want.
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