Solutions to Homework 8

Tim Smits

March 12, 2022

1.

- (a) Solve the equation $4^x \equiv 25 \mod 59$ (*Hint: 2 is a generator mod 59.*)
- (b) Find all solutions to $f(x) \equiv 0 \mod 6125$ where $f(x) = x^6 2x^5 35$. (Note: $6125 = 5^3 \cdot 7^2$).

Solution:

- (a) Note that $5 \equiv 64 \equiv 2^6 \mod 59$, and so we wish to solve the equation $4^x \equiv 2^{12} \mod 59$, i.e. $2^{2x} \equiv 2^{12} \mod 59$. Since exponentiation only matters mod 58, we want to solve $2x \equiv 12 \mod 58$. Dividing through by 2 yields $x \equiv 6 \mod 29$, so $x \equiv 6, 35 \mod 58$ are the solutions to $2x \equiv 12 \mod 58$, and therefore the solutions to $4^x \equiv 25 \mod 59$. Explicitly, this says our solutions are $4^6, 4^{35} \mod 59$.
- (b) By the Chinese remainder theorem, solving $f(x) \equiv 0 \mod 6125$ is equivalent to solving the system of equations $f(x) \equiv 0 \mod 5^3$ and $f(x) \equiv 0 \mod 7^2$.

Let's start with the first congruence. If r is a solution to $f(x) \equiv 0 \mod 5^3$, then $f(r) \equiv 0 \mod 5^3$ and so in particular, we must have $f(r) \equiv 0 \mod 5$. The solutions to $f(x) \equiv 0 \mod 5$ are $x \equiv 0, 2$. We have $f'(x) = 6x^5 - 10x^4$ and $f'(0) \equiv 0 \mod 5$, $f'(2) = 32 \not\equiv 0 \mod 5$. By Hensel's lemma, the latter root lifts to a root mod 5^k for any $k \ge 1$, and therefore there is a single solution to $f(x) \equiv 0 \mod 5^3$, given by the lift of the root 2. To figure this out, first let's lift it to a root mod 25. Set $c_1 = 2$ and $c_2 = 2 + 5t_2$. Then we wish to solve for t_2 that makes $f(c_2) \equiv 0 \mod 25$. We have $f(c_2) \equiv f(2) + f'(2) \cdot 5t_2 \mod 25$. We have f(2) = -35, and therefore dividing by 5 we wish to solve $-7+32t_2 \equiv 0 \mod 5$, i.e. $3+2t_2 \equiv 0 \mod 5$. This yields $t_2 \equiv 1 \mod 5$, so we may take $c_2 = 2+5 \cdot 1 = 7 \mod 25$. Now we want to lift again, but we actually don't have to: f(7) = 84000 which is divisible by 125, and therefore $x \equiv 7 \mod 25$, which is the same as saying that $f(0) \equiv 0 \mod 25$, which is clearly false. Therefore, $x \equiv 7 \mod 125$ is the unique solution to $f(x) \equiv 0 \mod 125$.

Next, we do this procedure to find the roots of $f(x) \mod 49$. The solutions to $f(x) \equiv 0 \mod 7$ are $x \equiv 0, 2 \mod 7$ and again we have $f'(0) \equiv 0 \mod 7$ and $f'(2) = 32 \neq 0 \mod 7$, so there is a single root mod 49. Set $c_1 = 2$ and $c_2 = 2 + 7t_2$. We wish to solve for t_2 that makes $f(c_2) \equiv 0 \mod 49$. We have $f(c_2) \equiv f(2) + f'(2) \cdot 7t_2 \mod 125$. Plugging in, and dividing by 7, we wish to solve $-5 + 32t_2 \equiv 0 \mod 7$, i.e. $2 + 4t_2 \equiv 0 \mod 7$. We see that $t_2 \equiv 3 \mod 7$ solves this equation, and so we can take $c_2 = 2 + 7 \cdot 3 = 23 \mod 49$. Similarly, 0 doesn't lift up and so $x \equiv 23 \mod 49$ is the unique solution to $f(x) \equiv 0 \mod 49$.

Therefore, by the Chinese remainder theorem, there is a single solution to $f(x) \equiv 0 \mod 6125$ given by $x \equiv 7 \mod 125$ and $x \equiv 23 \mod 49$. Solving this yields $x \equiv 3257 \mod 6125$.

2. Prove that for any $k \ge 1$, there are exactly p-1 distinct elements of $\mathbb{Z}/p^k\mathbb{Z}$ that satisfy $x^{p-1} = [1]$.

Solution: Consider the polynomial $f(x) = x^{p-1} - 1 \in \mathbb{Z}[x]$. By Fermat's little theorem, we have $f(c_i) \equiv 0 \mod p$ for $c_i = i$ with $1 \leq i \leq p-1$, and $f'(c_i) = (p-1)c_i^{p-2} \equiv -c_i^{p-2} \not\equiv 0 \mod p$. These are all the roots of $f(x) \mod p$, because a degree p-1 polynomial cannot have more than p-1 roots mod p. By Hensel's lemma, each root lifts up to a root of $f(x) \mod p^k$ for any $k \geq 1$. This says f(x) has at least p-1 roots mod p^k . On the other hand, if r is a root of $f(x) \mod p^k$ then $f(r) \equiv 0 \mod p^k$, so certainly $f(r) \equiv 0 \mod p$. In particular, $r \equiv c_i \mod p$ for some choice of i and therefore by the uniqueness of Hensel's lemma, r must be some lift of c_i . This says there are at most p-1 roots, so there are exactly p-1 roots of $f(x) \mod p^k$. Translating into a statement about $\mathbb{Z}/p^k\mathbb{Z}$, this says there are exactly p-1 solutions to $x^{p-1} = [1]$ as desired.

3.

- (a) Let p be an odd prime, and let a, k be integers with $p \nmid a$. Prove that $x^k \equiv a \mod p$ is solvable if and only if $a^{\frac{p-1}{d}} \equiv 1 \mod p$, where $d = \gcd(k, p-1)$. (*Hint: work in terms of a generator* g.)
- (b) Find all solutions to $x^5 \equiv 6 \mod 101$.

Solution:

- (a) Let g be a generator mod p. Any solution to $x^k \equiv a \mod p$ may be written as $x \equiv g^r \mod p$ for some r, and we may write $a \equiv g^s \mod p$ for some s. Therefore, solving the equation $x^k \equiv a \mod p$ is the same as solving the equation $g^{rk} \equiv g^s \mod p$ for r. Since exponentiation only matters mod p 1, this equation is solvable if and only if $rk \equiv s \mod p 1$. From homework 3, we know such an equation is solvable if and only if $d \mid s$, where $d = \gcd(k, p 1)$. Now, we will prove $d \mid s$ if and only if $a^{\frac{p-1}{d}} \equiv 1 \mod p$, and then we'll be done. Suppose that $d \mid s$. Then $a^{\frac{p-1}{d}} \equiv (g^s)^{\frac{p-1}{d}} \equiv (g^{p-1})^{\frac{s}{d}} \equiv 1 \mod p$. Now conversely, suppose that $a^{\frac{p-1}{d}} \equiv 1 \mod p$. This means that $g^s \frac{p-1}{d} \equiv 1 \mod p$. Since g is a generator mod p, we have $\operatorname{ord}_p(g) = p 1$, and so in particular, this is possible if and only if $p-1 \mid s^{\frac{p-1}{d}}$. This happens if and only if there is ℓ such that $s^{\frac{p-1}{d}} = (p-1)\ell$. Rearranging, we see this is equivalent to saying that $s = d\ell$ for some ℓ , i.e. $d \mid s$, which is what we wanted.
- (b) First, note that 2 is a generator mod 101 (this can be checked by hand), so $6 \equiv 2^s \mod 101$ for some s. First, let's compute $\operatorname{ord}_{101}(6)$. One can check by hand without too much trouble that $\operatorname{ord}_{101}(6) = 10$. This says $\operatorname{ord}_{101}(2^r) = 10$, and so using the key result that tells us the order of a power, we must have $\frac{100}{\gcd(r,100)} = 10$. This says $\gcd(r,100) = 10$, and so r is an odd multiple of 10. We have $2^{10} \equiv 14 \mod 101$, and so checking odd powers of 14 we find $2^{70} \equiv 14^7 \equiv 6 \mod 101$. Therefore, we wish to solve $2^{5r} \equiv 2^{70} \mod 101$, which is equivalent to solving $5r \equiv 70 \mod 100$. Dividing everything by 5, this is the same as saying $r \equiv 14 \mod 20$, so $r \equiv 14, 34, 54, 74, 94 \mod 101$ are the 5 different solutions to $5r \equiv 70 \mod 100$. This yields $x \equiv 2^{14}, 2^{34}, 2^{54}, 2^{74}, 2^{94} \mod 101$ as our solutions to $x^5 \equiv 6 \mod 101$.

4. On homework 5, you proved for prime p that $(p-1)! \equiv -1 \mod p$. Using the fact that there is a generator mod p, give an alternate proof of this result.

Solution: Let g be a generator mod p. Then for any $1 \le a \le p-1$, we have $a = g^k \mod p$ for some unique choice $1 \le k \le p-1$. Taking the product over all such values of a is the same thing as taking the product over all such values of k, so we have $(p-1)! = \prod_{a=1}^{p-1} a \equiv \prod_{k=1}^{p-1} g^k \equiv g^{\sum_{k=1}^{p-1} k} \equiv g^{\frac{p(p-1)}{2}} \mod p$. Now, $g^{\frac{p(p-1)}{2}} \equiv (g^{\frac{p-1}{2}})^p \mod p$ and because g is a generator, we must have $g^{\frac{p-1}{2}} \equiv -1 \mod p$, because $g^{\frac{p-1}{2}}$ satisfies $x^2 \equiv 1 \mod p$ which we know has as it's only solutions $x \equiv \pm 1 \mod p$. Finally, since p is odd, $(g^{\frac{p-1}{2}})^p \equiv (-1)^p \equiv -1 \mod p$, so piecing everything together yields $(p-1)! \equiv -1 \mod p$ as desired.

5. Let p be an odd prime. Prove that -1 is a square mod p if and only if $p \equiv 1 \mod 4$.

Solution: The forward direction was proven in problem 6(a) of homework 7. For the other direction, suppose that $p \equiv 1 \mod 4$ and let g be a generator mod p. Then $(g^{\frac{p-1}{4}})^2 \equiv g^{\frac{p-1}{2}} \equiv -1 \mod p$, which says that -1 is a square mod p.

6. Let p be an odd prime and let $k \ge 0$ be an integer. Prove that

$$1^{k} + 2^{k} + \ldots + (p-1)^{k} \equiv \begin{cases} 0 \mod p & p-1 \nmid k \\ -1 \mod p & p-1 \mid k \end{cases}$$

Solution: Let g be a generator mod p. Then for any $1 \le a \le p-1$ there is a unique choice of i with $1 \le i \le p-1$ such that $a \equiv g^i \mod p$. Therefore, taking the sum over all such powers of a is the same as taking the sum over all such powers of g: $\sum_{a=1}^{p-1} a^k \equiv \sum_{i=1}^{p-1} (g^i)^k \equiv \sum_{i=1}^{p-1} g^{ki} \mod p$. If $p-1 \mid k$, then $g^k \equiv 1 \mod p$, and so the sum is $\sum_{i=1}^{p-1} 1 \equiv p-1 \equiv -1 \mod p$. If $p-1 \nmid k$, Then recognizing the sum as a geometric series by writing it as $\sum_{i=1}^{p-1} (g^k)^i \mod p$, we find $\sum_{i=1}^{p-1} (g^k)^i \equiv ((g^k)^p - g^k)(g^k - 1)^{-1} \mod p$. (note: we can divide by $g^k - 1 \mod p$ precisely when $p-1 \nmid k$, and so the formula for the sum of a geometric series makes sense). Since $(g^k)^p \equiv g^k \mod p$ by Fermat's little theorem, this yields $\sum_{i=1}^{p-1} (g^k)^i \equiv 0 \mod p$. This proves what we want.