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1.

(a) Solve the equation 4x ≡ 25 mod 59 (Hint: 2 is a generator mod 59.)

(b) Find all solutions to f(x) ≡ 0 mod 6125 where f(x) = x6 − 2x5 − 35. (Note: 6125 = 53 · 72).

Solution:

(a) Note that 5 ≡ 64 ≡ 26 mod 59, and so we wish to solve the equation 4x ≡ 212 mod 59,
i.e. 22x ≡ 212 mod 59. Since exponentiation only matters mod 58, we want to solve
2x ≡ 12 mod 58. Dividing through by 2 yields x ≡ 6 mod 29, so x ≡ 6, 35 mod 58 are the
solutions to 2x ≡ 12 mod 58, and therefore the solutions to 4x ≡ 25 mod 59. Explicitly,
this says our solutions are 46, 435 mod 59.

(b) By the Chinese remainder theorem, solving f(x) ≡ 0 mod 6125 is equivalent to solving
the system of equations f(x) ≡ 0 mod 53 and f(x) ≡ 0 mod 72.

Let’s start with the first congruence. If r is a solution to f(x) ≡ 0 mod 53, then
f(r) ≡ 0 mod 53 and so in particular, we must have f(r) ≡ 0 mod 5. The solutions
to f(x) ≡ 0 mod 5 are x ≡ 0, 2. We have f ′(x) = 6x5 − 10x4 and f ′(0) ≡ 0 mod 5,
f ′(2) = 32 6≡ 0 mod 5. By Hensel’s lemma, the latter root lifts to a root mod 5k for
any k ≥ 1, and therefore there is a single solution to f(x) ≡ 0 mod 53, given by the lift
of the root 2. To figure this out, first let’s lift it to a root mod 25. Set c1 = 2 and
c2 = 2 + 5t2. Then we wish to solve for t2 that makes f(c2) ≡ 0 mod 25. We have
f(c2) ≡ f(2) + f ′(2) · 5t2 mod 25. We have f(2) = −35, and therefore dividing by 5 we
wish to solve −7+32t2 ≡ 0 mod 5, i.e. 3+2t2 ≡ 0 mod 5. This yields t2 ≡ 1 mod 5, so we
may take c2 = 2+5 ·1 = 7 mod 25. Now we want to lift again, but we actually don’t have
to: f(7) = 84000 which is divisible by 125, and therefore x ≡ 7 mod 125. Note that 0
doesn’t lift up: f(5t2) ≡ 0 mod 25 if and only if f(0)+f ′(0) ·5t2 ≡ 0 mod 25, which is the
same as saying that f(0) ≡ 0 mod 25, which is clearly false. Therefore, x ≡ 7 mod 125 is
the unique solution to f(x) ≡ 0 mod 125.

Next, we do this procedure to find the roots of f(x) mod 49. The solutions to f(x) ≡
0 mod 7 are x ≡ 0, 2 mod 7 and again we have f ′(0) ≡ 0 mod 7 and f ′(2) = 32 6≡ 0 mod 7,
so there is a single root mod 49. Set c1 = 2 and c2 = 2 + 7t2. We wish to solve for t2 that
makes f(c2) ≡ 0 mod 49. We have f(c2) ≡ f(2) + f ′(2) · 7t2 mod 125. Plugging in, and
dividing by 7, we wish to solve −5 + 32t2 ≡ 0 mod 7, i.e. 2 + 4t2 ≡ 0 mod 7. We see that
t2 ≡ 3 mod 7 solves this equation, and so we can take c2 = 2 + 7 · 3 = 23 mod 49. Simi-
larly, 0 doesn’t lift up and so x ≡ 23 mod 49 is the unique solution to f(x) ≡ 0 mod 49.

Therefore, by the Chinese remainder theorem, there is a single solution to f(x) ≡ 0 mod
6125 given by x ≡ 7 mod 125 and x ≡ 23 mod 49. Solving this yields x ≡ 3257 mod 6125.
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2. Prove that for any k ≥ 1, there are exactly p − 1 distinct elements of Z/pkZ that satisfy
xp−1 = [1].

Solution: Consider the polynomial f(x) = xp−1 − 1 ∈ Z[x]. By Fermat’s little theorem, we
have f(ci) ≡ 0 mod p for ci = i with 1 ≤ i ≤ p−1, and f ′(ci) = (p−1)cp−2i ≡ −cp−2i 6≡ 0 mod p.
These are all the roots of f(x) mod p, because a degree p−1 polynomial cannot have more than
p−1 roots mod p. By Hensel’s lemma, each root lifts up to a root of f(x) mod pk for any k ≥ 1.
This says f(x) has at least p−1 roots mod pk. On the other hand, if r is a root of f(x) mod pk

then f(r) ≡ 0 mod pk, so certainly f(r) ≡ 0 mod p. In particular, r ≡ ci mod p for some choice
of i and therefore by the uniqueness of Hensel’s lemma, r must be some lift of ci. This says
there are at most p− 1 roots, so there are exactly p− 1 roots of f(x) mod pk. Translating into
a statement about Z/pkZ, this says there are exactly p− 1 solutions to xp−1 = [1] as desired.

3.

(a) Let p be an odd prime, and let a, k be integers with p - a. Prove that xk ≡ a mod p is solvable

if and only if a
p−1
d ≡ 1 mod p, where d = gcd(k, p− 1). (Hint: work in terms of a generator

g.)

(b) Find all solutions to x5 ≡ 6 mod 101.

Solution:

(a) Let g be a generator mod p. Any solution to xk ≡ a mod p may be written as x ≡
gr mod p for some r, and we may write a ≡ gs mod p for some s. Therefore, solving
the equation xk ≡ a mod p is the same as solving the equation grk ≡ gs mod p for r.
Since exponentiation only matters mod p − 1, this equation is solvable if and only if
rk ≡ s mod p − 1. From homework 3, we know such an equation is solvable if and only

if d | s, where d = gcd(k, p− 1). Now, we will prove d | s if and only if a
p−1
d ≡ 1 mod p,

and then we’ll be done. Suppose that d | s. Then a
p−1
d ≡ (gs)

p−1
d ≡ (gp−1)

s
d ≡ 1 mod p.

Now conversely, suppose that a
p−1
d ≡ 1 mod p. This means that gs

p−1
d ≡ 1 mod p. Since

g is a generator mod p, we have ordp(g) = p − 1, and so in particular, this is possible if
and only if p− 1 | sp−1

d . This happens if and only if there is ` such that sp−1
d = (p− 1)`.

Rearranging, we see this is equivalent to saying that s = d` for some `, i.e. d | s, which
is what we wanted.

(b) First, note that 2 is a generator mod 101 (this can be checked by hand), so 6 ≡ 2s mod 101
for some s. First, let’s compute ord101(6). One can check by hand without too much
trouble that ord101(6) = 10. This says ord101(2r) = 10, and so using the key result that
tells us the order of a power, we must have 100

gcd(r,100) = 10. This says gcd(r, 100) = 10,

and so r is an odd multiple of 10. We have 210 ≡ 14 mod 101, and so checking odd powers
of 14 we find 270 ≡ 147 ≡ 6 mod 101. Therefore, we wish to solve 25r ≡ 270 mod 101,
which is equivalent to solving 5r ≡ 70 mod 100. Dividing everything by 5, this is the same
as saying r ≡ 14 mod 20, so r ≡ 14, 34, 54, 74, 94 mod 101 are the 5 different solutions
to 5r ≡ 70 mod 100. This yields x ≡ 214, 234, 254, 274, 294 mod 101 as our solutions to
x5 ≡ 6 mod 101.

4. On homework 5, you proved for prime p that (p− 1)! ≡ −1 mod p. Using the fact that there is
a generator mod p, give an alternate proof of this result.
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Solution: Let g be a generator mod p. Then for any 1 ≤ a ≤ p − 1, we have a = gk mod p
for some unique choice 1 ≤ k ≤ p− 1. Taking the product over all such values of a is the same
thing as taking the product over all such values of k, so we have (p−1)! =

∏p−1
a=1 a ≡

∏p−1
k=1 g

k ≡
g
∑p−1

k=1 k ≡ g
p(p−1)

2 mod p. Now, g
p(p−1)

2 ≡ (g
p−1
2 )p mod p and because g is a generator, we must

have g
p−1
2 ≡ −1 mod p, because g

p−1
2 satisfies x2 ≡ 1 mod p which we know has as it’s only

solutions x ≡ ±1 mod p. Finally, since p is odd, (g
p−1
2 )p ≡ (−1)p ≡ −1 mod p, so piecing

everything together yields (p− 1)! ≡ −1 mod p as desired.

5. Let p be an odd prime. Prove that −1 is a square mod p if and only if p ≡ 1 mod 4.

Solution: The forward direction was proven in problem 6(a) of homework 7. For the other

direction, suppose that p ≡ 1 mod 4 and let g be a generator mod p. Then (g
p−1
4 )2 ≡ g

p−1
2 ≡

−1 mod p, which says that −1 is a square mod p.

6. Let p be an odd prime and let k ≥ 0 be an integer. Prove that

1k + 2k + . . . + (p− 1)k ≡

{
0 mod p p− 1 - k
−1 mod p p− 1 | k

Solution: Let g be a generator mod p. Then for any 1 ≤ a ≤ p−1 there is a unique choice of i
with 1 ≤ i ≤ p−1 such that a ≡ gi mod p. Therefore, taking the sum over all such powers of a is
the same as taking the sum over all such powers of g:

∑p−1
a=1 a

k ≡
∑p−1

i=1 (gi)k ≡
∑p−1

i=1 gki mod p.

If p − 1 | k, then gk ≡ 1 mod p, and so the sum is
∑p−1

i=1 1 ≡ p − 1 ≡ −1 mod p. If p − 1 - k,

Then recognizing the sum as a geometric series by writing it as
∑p−1

i=1 (gk)i mod p, we find∑p−1
i=1 (gk)i ≡ ((gk)p − gk)(gk − 1)−1 mod p. (note: we can divide by gk − 1 mod p precisely

when p − 1 - k, and so the formula for the sum of a geometric series makes sense). Since

(gk)p ≡ gk mod p by Fermat’s little theorem, this yields
∑p−1

i=1 (gk)i ≡ 0 mod p. This proves
what we want.
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