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February 26, 2022

1. Do the following computations.

(a) Reduce 826312012 mod 7000.

(b) Reduce 100101
102

mod 13.

(c) Find all primes p such that ordp(2) = 24.

(d) Solve the equation x13 ≡ 35 mod 360.

Solution:

(a) We have ϕ(7000) = 2400, and 8263 ≡ 1263 mod 7000. Euler’s theorem tells us exponents
only matter mod ϕ(n), so we have 862312012 ≡ 126312 mod 7000. One can then check
that 126312 ≡ 4481 mod 7000.

An alternative (better) method is as follows: 7000 = 23 · 53 · 7, so the congruence x ≡
826312012 mod 7000 is equivalent to the system of congruences x ≡ 826312012 mod 8,
x ≡ 826312012 mod 125, x ≡ 826312012 mod 7 by CRT. Reducing each expression using
the same idea as the first paragraph, we find x ≡ 1 mod 8, x ≡ 106 mod 125, x ≡ 1 mod 7.
Solving the system using the methods of the previous homework yields x ≡ 4481 mod
7000.

(b) We have ϕ(13) = 12. Since exponentiation only matters mod ϕ(n), first we need to
compute 101102 mod 12. We have 101 ≡ 5 mod 12 and ϕ(12) = 4, so now the exponent
only matters mod 4. Since 102 ≡ 2 mod 4, we find 101102 ≡ 52 ≡ 1 mod 12. This then
says 100101

102 ≡ 91 ≡ 9 mod 13.

(c) Since ordp(2) = 24, we have 224 ≡ 1 mod p. In particular, we must have 212 ≡ −1 mod p,
because (212)2 ≡ 1 mod p and the only solutions to x2 ≡ 1 mod p are ±1 mod p (and it
can’t be 1 because otherwise 24 wouldn’t be the order!). This says p | 212+1 = 17 ·241, so
p = 17 or p = 241 are the only possibilities. On the other hand, by Fermat’s little theorem
2p−1 ≡ 1 mod p, so 24 = ordp(2) | p − 1 says p ≡ 1 mod 24. This means p = 241 is the
only possibility, and indeed one can check by hand that one actually has ord241(2) = 24.

(d) We wish to find k such that x13k ≡ x mod 360. Then, we would have x ≡ 35k mod 360.
Since ϕ(360) = 96 and exponentiation only matters mod ϕ(n), we wish to find k such
that 13k ≡ 1 mod 96. This is a standard inverse computation, and solving yields k ≡
37 mod 96. Plugging in then yields x ≡ 3537 ≡ 35 mod 360.

2. This exercise is a primality test based on Fermat’s little theorem. For any integer a and prime
p with p - a, Fermat’s little theorem says ap−1 ≡ 1 mod p, so taking the contrapositive of this
statement says that if ap−1 6≡ 1 mod p, then p is composite! This gives rise to an algorithm for
testing if an integer n is prime or not:
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� Randomly pick an integer a with n - a.

� If an−1 6≡ 1 mod n, then n is composite and we’re done!

� Otherwise, if an−1 ≡ 1 mod n, pick a different integer a and repeat.

If a is an integer such that an−1 6≡ 1 mod n, we call a a Fermat witness for the compositeness
of n.

(a) Using WolframAlpha or any other computer algebra system, find the smallest Fermat witness
for 2821.

(b) Let m = 56052361. Using WolframAlpha or any other computer algebra system, determine if
2, 3, 5, 6, 7, 10, or 11 are Fermat witnesses for m. What do you find? Is this enough information
to tell you with certainty if m is prime or composite, and why?

We call n a Carmichael number if an−1 ≡ 1 mod n for all integers a with gcd(a, n) = 1. Carmichael
numbers are the integers for which our primality test will never give us any information.

(c) Prove that 561 is a Carmichael number. (Hint: 561 = 3 · 11 · 17. Euler’s theorem might be
useful.)

Solution:

(a) Try a = 2, 3, 5, 6, 7 on WolframAlpha and you’ll find a = 7 is the smallest witness.

(b) For all listed values of a, one has am−1 ≡ 1 mod m. This information isn’t enough to tell
you anything. It’s possible that there’s a witness we just haven’t found yet, which would
mean m is composite. On the other hand, even if we don’t find a witness, this doesn’t
mean anything. The test just says if there is a witness, then m is composite, it can’t give
us information about whether m is prime.

Remark: 56052361 is actually a Carmichael number, so am−1 ≡ 1 mod m for all a coprime
to m!

(c) Since 561 = 3 · 11 · 17, Euler’s theorem says for any a coprime to 561 we have a2 ≡
1 mod 3, a10 ≡ 1 mod 11, and a16 ≡ 1 mod 17. Since 560 is divisible by 2, 10, 16, we
have a560 ≡ 1 mod 3, a560 ≡ 1 mod 11, and a560 ≡ 1 mod 17, so gluing together yields
a560 ≡ 1 mod 561 as desired.

3. Euler’s theorem says for any integer a with gcd(a, n) = 1, that aϕ(n) ≡ 1 mod n. However,
ϕ(n) is often times not the smallest exponent we can choose with this property. The Carmichael
function λ(n) is defined to be the smallest positive integer k such that ak ≡ 1 mod n for all integers
a with gcd(a, n) = 1. It turns out, for example, that λ(1729) = 36, and so every integer a with
gcd(a, 1729) = 1 satisfies a36 ≡ 1 mod 1729.

(a) Prove that n is Carmichael number if and only if λ(n) | n− 1.

(b) Compute λ(3), λ(11) and λ(17).

(c) Compute λ(561).

Solution:
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(a) First, suppose that λ(n) | n − 1, so n − 1 = λ(n)k for some integer k. Then since
aλ(n) ≡ 1 mod n by definition, we have an−1 = (aλ(n))k ≡ 1 mod n. Conversely, suppose
that n is a Carmichael number, so that an−1 ≡ 1 mod n for any a coprime to n. Write
n− 1 = λ(n)q + r with 0 ≤ r < λ(n) by the division algorithm. Then for any a coprime
to n, we have 1 ≡ an−1 ≡ (aλ(n))q · ar ≡ ar mod n. This forces r = 0 because λ(n) is the
smallest positive integer with this property, and so λ(n) | n− 1 as desired.

(b) One can check (by hand, for example) that there are generators mod 3, mod 11, and mod
17: 2 is a generator mod 3 and mod 11, while 3 is a generator mod 17. In particular, this
means the smallest exponent you can raise said generator to get back 1 in each case is
2, 10, 16 respectively, which would force λ(3) = 2, λ(11) = 10, λ(17) = 16.

(c) From the previous problem, for any a coprime to 561 we know that a2 ≡ 1 mod 3,
a10 ≡ 1 mod 11, and a16 ≡ 1 mod 17. The least common multiple of 2, 10, 16 is 80, and
so we have a80 ≡ 1 mod 3, 11, 17 which would tell us a80 ≡ 1 mod 561. In particular,
this says λ(561) ≤ 80. The point is that we have generators mod 3, 11, 17, and if g is a
generator mod p we have gk ≡ 1 mod p if and only if p−1 | k. This says 2, 10, 16 | λ(561)
and so λ(561) is divisible by their least common multiple, which says 80 | λ(561) so
80 ≤ λ(561). This yields λ(561) = 80.

4. The goal of this problem is to give an alternate proof of Euler’s theorem following the main
philosophy of number theory.

(a) Prove that for any integer k with 1 ≤ k ≤ p− 1, that
(
p
k

)
≡ 0 mod p.

(b) For any integer a ≥ 0, prove by induction on a that ap ≡ a mod p. Deduce that for gcd(a, p) =
1, that aϕ(p) ≡ 1 mod p. (You may assume the binomial theorem for this.)

(c) Prove that for any integers a, k with k ≥ 1 and gcd(a, p) = 1, that aϕ(p
k) ≡ 1 mod pk. (Again,

you may assume the binomial theorem for this.)

(d) Prove that for integers a, n with gcd(a, n) = 1 that aϕ(n) ≡ 1 mod n.

Solution:

(a) By definition,
(
p
k

)
= p!

k!(p−k)! . Binomial coefficients are integers, and for 0 ≤ k ≤ p− 1 the

expression in the denominator contains no factor of k because each term in the factorials
are less than p. Since there is a factor of p up top, we get p |

(
p
k

)
so
(
p
k

)
≡ 0 mod p.

(b) This is obvious for a = 0. Assume that for some integer k that kp ≡ k mod p. We wish
to show that (k+ 1)p ≡ k+ 1 mod p. By the binomial theorem, (k+ 1)p ≡

∑p
i=0

(
p
i

)
ki ≡

kp + 1 ≡ k + 1 mod p by assumption, and because all coefficients in the sum except the
last two vanish mod p by part (a). This is what we wanted, so we’re done by induction.

(c) We prove by induction on k that aϕ(p
k) ≡ 1 mod pk for k ≥ 1. The base case k = 1

was the previous part. Now assume that aϕ(p
k) ≡ 1 mod pk for some k. We wish to

show that aϕ(p
k+1) ≡ 1 mod pk+1. Note that ϕ(pk+1) = pϕ(pk) from the formula ϕ(pk) =

pk−1(p−1). Therefore, aϕ(p
k+1) ≡ apϕ(pk) ≡ (aϕ(p

k))p mod pk+1. Since aϕ(p
k) ≡ 1 mod pk

by assumption, we can write aϕ(p
k) = 1 + pk` for some integer `. Plugging in, we

want to compute (1 + pk`)p mod pk+1. By the binomial theorem, we have (1 + pk`)p ≡∑p
i=0

(
p
i

)
(pk`)i ≡ 1 mod pk+1 because (pk`)i is divisible by pk+1 for 2 ≤ i ≤ p and for

i = 1 we have
(
p
1

)
= p so p · (pk`) is divisible by pk+1. Therefore, we have shown that

aϕ(p
k+1) ≡ 1 mod pk+1 and so by induction, we’re done.
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(d) Write n = pe11 · · · p
ek
k as a product of primes. By part (b), we have aϕ(p

ei
i ) ≡ 1 mod peii

for all i. Since ϕ(peii ) | ϕ(n) for each i, in particular this says aϕ(n) ≡ 1 mod peii for each
i, and gluing back together with CRT says aϕ(n) ≡ 1 mod n as desired.

5. On homework 2, you proved the only integers of the form 2n−1 that can be prime are Mersenne
primes, primes of the form 2p − 1 for prime p, and that the only integers of the form 2n + 1 that
can be prime are Fermat numbers, integers of the form 22

n

+ 1.

(a) Let p be an odd prime, and let q be a prime divisor of 2p − 1. Prove that ordq(2) = p.
Similarly, for odd prime p prove that if p | 22n + 1 then ordp(2) = 2n+1.

(b) Deduce that if q is a prime divisor of 2p − 1, then q = 2pk + 1 for some integer k. Similarly,
deduce that if p is a prime divisor of 22

n

+ 1, that p must be of the form 2n+1k + 1 for some
integer k.

(c) On homework 2, you proved using a computer that 232 + 1 = 641 · 6700417. Use the previous
part to explain how one could identify 641 as a possible factor, and prove by hand that
641 | 232 + 1 using modular arithmetic, so that 641 is the smallest prime divisor of 232 + 1.
Similarly, find by hand the smallest prime divisor of 229 − 1.

Solution:

(a) We have 2p ≡ 1 mod q by assumption, and so this says ordq(2) | p, so ordq(2) = 1 or p.
It’s obviously not 1, so ordq(2) = p as desired. Similarly, one has 22

n ≡ −1 mod p, and

so squaring yields 22
n+1 ≡ 1 mod p. This says ordp(2) | 2n+1. The order must then be

2k for some 1 ≤ k ≤ n+ 1. If k < n+ 1, write n = k + r for some r ≥ 0. We then have

22
n

= (22
k

)2
r

and so this would mean that 22
n ≡ 1 mod p, which is a contradiction. This

leaves ordp(2) = 2n+1 as the only possibility.

(b) From part (a), we showed that ordq(2) = p. Since 2q−1 ≡ 1 mod q by Fermat’s little
theorem, this says p | q− 1. Since q is even, we must also have 2 | q− 1 and so 2p | q− 1,
i.e. q = 1 + 2pk for some k. Similarly, 2p−1 ≡ 1 mod p and therefore part (a) says
2n+1 | p− 1 yields p = 1 + 2n+1k for some k.

(c) 32 = 25 so any prime factor of 232 + 1 is of the form 64k + 1, and 641 is indeed of
this form. We then want to show that 232 ≡ −1 mod 641, so that 641 is a factor of
232 + 1. At this point, this is just a straightforward computation: 28 ≡ 256 mod 641 and
so 216 ≡ (256)2 ≡ 154 mod 641 and 232 ≡ (154)2 ≡ 640 ≡ −1 mod 641.

Similarly, any prime factor of 229−1 must be of the form 1+58k. The first two primes of
this form are 59 and 233. We have 225 ≡ (32)5 ≡ 11 mod 59 so 229 ≡ 11·16 ≡ −1 mod 59.
Checking 233, we have 225 ≡ (32)5 ≡ 102 mod 233 and so 229 ≡ 16 · 102 ≡ 1 mod 233, so
233 is the smallest prime dividing 229 − 1.

6. On homework 4, you proved that there were infinitely many primes of the form 4k + 3. Now,
you will prove that there are infinitely many primes of the form 4k + 1.

(a) Show that the odd prime divisors of the integer n2 + 1 are of the form 4k + 1.

(b) Prove there are infinitely many primes of the form 4k + 1. (Hint: consider (2p1 · · · pk)2 + 1.)
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Solution:

(a) Let p be an odd prime divisor of n2 + 1, so n2 ≡ −1 mod p. Then squaring says n4 ≡
1 mod p, so ordp(n) | 4. It’s not 2 by what we just said, so 4 = ordp(n). Note that p - n
because otherwise p | (n2 + 1) − n2 = 1. Therefore, np−1 ≡ 1 mod p by Fermat’s little
theorem and so 4 | p− 1 yields p = 4k + 1 for some k as desired.

(b) Suppose there were finitely many primes p1, . . . , pk with pi ≡ 1 mod 4. Consider N =
(2p1 · · · pk)2 + 1: we have N ≡ 1 mod 4, so if it’s prime, we’ve found a new prime that’s
1 mod 4, which is a contradiction. Therefore, it must have some prime divisor p. By part
(a), p ≡ 1 mod 4 so p = pi for some i. However, clearly N ≡ 1 mod pi and so none of
the pi divide N , which also is a contradiction. Therefore, there must be infinitely many
primes that are congruent to 1 mod 4.
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