Solutions to Homework 6

Tim Smits

February 18, 2022

1. Solve the following systems of congruences. Your answer should be a single congruence class in
each case: £ = _mod _.

(a)

r =6 mod8
z =3 mod9
r =8 mod 11
xr = 7 mod 13
(b)
z = 10 mod 12
r =4 mod 15
r = 14 mod 50

Note: the moduli here are not pairwise coprime, so you’ll have to do something different
than usual. (Hint: factor each modulus and turn each single congruence into a system of
congruences. Then you can eliminate the redundant ones.)

(¢) Show that the system below does not have a solution.

r =6 mod 12
r =9 mod 15
z = 22 mod 50

Combined with the previous part, this demonstrates that the moduli not being pairwise
coprime may or may not result in solutions to systems.

Solution:

(a) First, we solve the first two congruences. Saying x = 6 mod 8 means we can write
x = 6 + 8k for some integer k. Plugging into the second congruence, we find 6 + 8k =
3mod 9. This says 8k = 6 mod 9, and since 8 is it’s own inverse mod 9, multiplying
through yields £ = 3 mod 9. This says k = 3 4+ 9¢ for some ¢, so plugging in says
x=06+8(3+9¢) =30+ 72¢, so x = 30 mod 72. Similarly, the solution to z = 8 mod 11
and z = 7 mod 13 is given by = 85 mod 143, and the solution to these two remaining
congruences is x = 7950 mod 10296.

(b) Since 12 = 4-3, saying * = 10 mod 12 is the same as saying = 2 mod 4 and = 1 mod 3.
Similarly, = 4 mod 15 means * = 1 mod 3 and x = 4 mod 5, while z = 14 mod 50
means x = 0 mod 2 and z = 14 mod 25. Of the 6 congruences, only three of them are
relevant: x = 0 mod 2 says x is even, which is already covered by = 2 mod 4, while




x = 14 mod 25 already means that £ = 4 mod 5. Therefore, we wish to solve x = 2 mod 4,
z =1 mod 3, and x = 14 mod 25. Solving these three congruences as in the previous part
yields = 214 mod 300.

(¢) Saying x = 9 mod 15 means, in particular, that x = 4 mod 5. Similarly, = 22 mod
50 means z = 2 mod 5, and these obviously cannot both simultaneously be satisfied.
Therefore, the system has no solution.

2. Prove for integers m,n > 1 that ¢(mn) = go(m)go(n)ﬁ where d = ged(m, n).

Solution: Write p(m) = m[],,,(1 — ), ¢(n) = n]],, (1 = 3), e(mn) = mn ], (1 = ).
and ¢(d) = d]],4(1 - 117) using the formula for the ¢ function. Therefore, we wish to prove
that p(d)p(mn) = p(m)e(n)d, which after plugging in and canceling is equivalent to proving
lemn(l — 1)Hp|d(1 11)) = Hp‘m(l — 1%) Hp‘n(l — ]%) The product in the right hand side
counts the primes that divide both m and n twice, however, because the primes dividing mn
are precisely the primes that divide m or n and the primes dividing d are precisely the primes
that divide both m and n from our formula on HW 4, the products on both sides contain the
same terms and we’re good.

3.
(a) Find, with proof, all solutions to ¢(n) = 6.
(b) Prove there is no solution to ¢(n) = 14.

Solution:

(a) If p | n then p— 1 | p(n) from the multiplicativity of the ¢ function. This says the
only possible prime divisors of n must be the primes p such that p — 1 | 6, which leaves
p € {2,3,7}. Write n = 2237¢ for some integers a,b,c. By multiplicativity, we must
have 6 = p(n) = ©(2%)¢(3%)¢(7¢). We now just need to figure out restrictions on the
exponents. For ¢ > 2 we have p(7¢) > 6, so ¢ < 1. For b > 3 we have ¢(3%) > 6, and for
a > 3 we have 4 | ¢(2%). This yields 0 < a <2,0<b<2,and 0 <c¢<1. If c=1, then
©(7) = 6,50 b =0 and a = 0,1. This gives n = 7,14. Otherwise, ¢ = 0, so n = 293,
If b = 2, then we must have a = 0,1 so we get the two solutions n = 9,18. We cannot
actually have b = 1, because this would mean ¢(2%) = 3, and ¢(n) is always even for
integers bigger than 2. This leaves b = 0 as the last possibility so n = 2%, but clearly
no a in our range actually works. Therefore, there are only the four solutions we found:
n=17914,18.

(b) Again, note that if p | n then p—1 | ¢(n) so p must be a prime such that p—1 | 14. This
leaves p € {2,3}. Thus, n = 293, from which we see that ((n) is never divisible by 7, so
it can never equal 14. Therefore, there are no solutions.

4. Let p > 2 be prime and k > 1. Prove that 22 = 1 mod p* if and only if z = 1 mod p*.

Solution: If x = +1 rnod p*, then clearly we have 22 = 1 mod p*. Now suppose that 22 =
1 mod p*. This says p* | (22 — 1) = (z + 1)(z — 1). We'd like to show that either p* | (x + 1)
or p¥ | (z — 1). In other words, we need to show that all powers of p go into a single factor.
Suppose otherwise, that p | (x + 1) and p | (# — 1). Then p must divide their difference, which
is 2. However, p is odd, so this isn’t possible. Therefore, p* divides one of the factors and we
are done.
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5.

(a) What are the solutions to 22 = 1 mod 2? 22 = 1 mod 4? 22 = 1 mod 8?

(b) Prove that for k > 3, 2 = 1 mod 2* has exactly four solutions: z = 41 mod 2, z
+1 + 2F=Y mod 2F. (Hint: prove this by induction on k. If 2> = 1 mod 2*, note that x>
1 mod 2F71.)

Solution:
(a) =1mod 2, x = +1 mod 4, x = +1,£3 mod 8.

(b) The case of k = 3 was done above, so suppose for some integer k that the only solutions
to 22 = 1 mod 2* are x = +1 mod 2* and = = +1 + 2! mod 2¥. We wish to show
there are exactly four solutions to 2 = 1 mod 2**!, given by 2 = +1 mod 2¥*! and
x = £1+ 2F mod 2F+1. Suppose that 22 = 1 mod 2¥*!, then in particular, we must have
22 = 1 mod 2*. By assumption, this means z = +1 mod 2* or z = £1 + 27! mod 2*.
To handle all possible cases simultaneously, we write = +1 + 2¥=1¢ 4+ 2Fm for some
integers £, m, where £ = 0 or 1. Squaring says 2 = (£1+ 2810 +2Fm)% = 1+ 22k=22 1
22km?2 4 2k 4 2k +1m + 22Fmf. Since 2k — 2 > k + 1 and 2k > k + 1, reducing mod 2++!
says 22 = 1 + 2F¢ mod 2**!, which forces ¢ = 0. This says © = £1 + 2¥m for some m.
If m is even, then x = £1 mod 2**! and if m is odd, then z = &1 + 2* mod 2**!. This
says these are the only possible solutions, and it’s easy to see that they all indeed work,
so there are precisely four solutions as desired.

6.

(a) Let m,n > 1 be relatively prime integers. Prove the map f : Spn, — Sm X Sp given by
Fx)mn) = ([€]m,[z]n) is a bijection. (Hint: you’ll want to use the Chinese Remainder
Theorem to show the map is surjective!)

(b) Let N =2°pi* ---pi* be the prime factorization of N. Set No = [Sz¢| and Ny, =[S, |. Write
down a formula for the number of solutions to 22 = 1 mod N in terms of Ny and N,,, and use
your formula to compute the number of solutions to 2% = [1] in Z/NZ for N = 60,4410, 10!.

(c) Find all solutions to 2 = 1 mod 39188. (Much like with the proof of the Chinese Remainder
Theorem, your proof of part (a) will tell you how to do this!)

Solution:

(a) The proof that f is injective is the same as in the proof of the Chinese Remainder
Theorem, so all we really have to do is check that f is surjective. Choose ([a]m, [b]n) €
Sm X Sp. By the Chinese Remainder Theorem, we can find [z],,, € Z/mnZ such that
x = a mod m and z = b mod n. We'd then like to say that f([x]mn) = ([a]m, [b]n) so that
f is surjective, but before we can do that we must check that this congruence class we
have constructed lives in Sy, i.e. that 22 = 1 mod mn. Since z = a mod m, this means
2? = a®> = 1 mod m and similarly 22 = 1 mod n. This says m | 22 — 1 and n | 2? — 1,
so because m and n are relatively prime we get that mn | 22 — 1, so 22 = 1 mod mn.
Therefore [x],n € Spmn, so we're good. Therefore, f is a bijection as desired.

(b) Writing N = 2°p{* ---p}* and repeatedly applying the above bijection says there is a
bijection between Sy and Sae X Spelzl X ... X szk. Taking cardinalities then says |Sy| =
|S2e X Sper X ... % Ska| = [Sge| - [Spea -+ \szk| = NoN,, --- N, . Problem 4 tells us that
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Np, = 2 and N, is either 1,2,4 depending on if e = 1,2,> 3. We have 60 = 22.3.5,
so |Seo| = |S4] - |S5] - |S5] = 2-2-2 = 8. Similarly, we have 4410 = 2-32.5-72 so
|S4410| =1-2-2-2=8. Finally, 10! =28 .3%.52.750 Sjpy =4-2-2-2 = 32.

We have 39188 = 22 - 97 - 101, so by part (b) there are 2 -2 -2 = 8 solutions to r? =
1 mod 39188. Each of the congruence 2> = 1 mod 4, 22 = 1 mod 97, and 2 = 1 mod 101
have as their only solutions x = +1 mod 4,x = +1 mod 97,2 = +1 mod 101. This gives
rise to 8 possible systems of three equations, and each system glues to a solution modulo
39188 by the Chinese Remainder Theorem. For example, x = 1 mod 4, x = —1 mod 97,
x = 1mod 101 can be solved using the method of problem 1 and yields the solution
z = 4849 mod 39188. If you solve all 8 systems you’ll find the 8 solutions are x =
1,4849,14745,19593, 19595, 24443, 34339, 39187 mod 39188.
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