
Solutions to Homework 5

Tim Smits

February 12, 2022

1.(Computations) Do each of the following computations below. Show your work, don’t just write
the answer!

(a) Reduce 84526 · 8629673 − 448184 · 5911832 mod 15.

(b) Compute 1477−1 mod 9235.

(c) Reduce 1769234 mod 31.

(d) Reduce 1! + 2! + . . . + 100! mod 25.

Solution:

(a) First, we just compute everything mod 15. We have 84526 ≡ 1 mod 15, 862967 ≡ 2 mod
15, 448184 ≡ 14 ≡ −1 mod 15, and 591183 ≡ 3 mod 15. Therefore, we want to compute
1 · 23 − (−1) · 32 mod 15 ≡ 8 + 9 mod 15 ≡ 2 mod 15.

(b) Note that gcd(1477, 9235) = 1 so that 1477 is indeed invertible mod 9235. Running the
Euclidean algorithm and performing back substitution says 1477·4308+9235·(−689) = 1,
so taking this mod 9235 says 1477 · 4308 ≡ 1 mod 9235, so 1477−1 ≡ 4308 mod 9235.

(c) First, note that 1769 ≡ 2 mod 31, so we want to compute 2234 mod 31. We have 25 ≡
1 mod 31, and 234 = 5 ·46+4, so 2234 ≡ 25·46+4 mod 31 ≡ (1)46 ·24 mod 31 ≡ 16 mod 31.

(d) Note that 10! is divisible by 25 because both 5 and 10 appear as terms in the product.
For n > 10, 5 and 10 still appear as terms in the product, so n! remains divisible by 25.
This says 1! + 2! + . . . + 100! ≡ 1! + 2! + . . . + 9! mod 25 ≡ 409113 mod 25 ≡ 13 mod 25.

2. Prove that 1
5n

5 + 1
3n

3 + 7
15n is an integer for all n ∈ Z.

Solution: Putting everything over a common denominator, we wish to show that 3n5+5n3+7n
15

is an integer, or equivalently, that 15 | 3n5 + 5n3 + 7n. This is the same thing as checking
that 3n5 + 5n3 + 7n ≡ 0 mod 15. Note that divisibility by 15 is equivalent to divisibility
by both 3 and 5, because 15 = 3 · 5 and 3 and 5 are relatively prime. Mod 3, we have
3n5 + 5n3 + 7n ≡ 2n3 + n mod 3. Plugging in n = 0, 1, 2 shows that 2n3 + n ≡ 0 mod 3 always
holds, so 3n5 + 5n3 + 7n is always divisible by 3. Similarly, mod 5 we have 3n5 + 5n3 + 7n ≡
3n5 + 2n mod 5 and plugging in n = 0, 1, 2, 3, 4 shows that 3n5 + 2n ≡ 0 mod 5 always holds,
so we’re done.

3. This problem deals with divisibility tests for integers. Let n = an · 10n + . . .+ a1 · 10 + a0 be the
decimal expansion of n. For example, 123 = 1 · 100 + 2 · 10 + 3.

(a) Prove that n is divisible by 3 if and only if a0 + a1 + . . . + an is divisible by 3. Show that a
similar condition holds for divisibility by 9, but does not work for divisibility by 27.
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(b) Prove that n is divisible by 11 if and only if a0 − a1 + a2 + . . . + (−1)nan is divisible by 11.

(c) For k ≥ 1, prove that n is divisible by 2k if and only if the last k digits of n are divisible by
2k. Show that a similar condition holds for powers of 5 as well.

Solution:

(a) n is divisible by 3 if and only if n ≡ 0 mod 3. Writing n = an · 10n + . . .+ a1 · 10 + a0, we
have n ≡ an + . . . + a0 mod 3 because 10 ≡ 1 mod 3. Therefore, n ≡ 0 mod 3 if and only
if a0 + . . . + an is divisible by 3. The same condition holds mod 9 because 10 ≡ 1 mod 9,
so we get the same test for divisibility by 9. It doesn’t work for 27, because 2 + 7 = 9 is
not divisible by 27.

(b) Similarly to the above, 10 ≡ −1 mod 11 So n is divisible by 11 if and only if n ≡
0 mod 11, which holds if and only if an · (−1)n + . . . + a1 · (−1) + a0 ≡ 0 mod 11, i.e. if
a0 − a1 + . . . + (−1)nan is divisible by 11.

(c) We have n is divisible by 2k if and only if n ≡ 0 mod 2k. For n ≥ k, we have 10n ≡
0 mod 2k, so n ≡ 0 mod 2k if and only if ak−1 · 10k−1 + . . .+a1 · 10 +a0 ≡ 0 mod 2k. The
number ak−1 · 10k−1 + . . . + a1 · 10 + a0 is simply the last k digits of n. The exact same
proof holds for powers of 5, just replacing the 2’s everywhere with a 5.

4. This problem deals with solving linear equations in Z/nZ, which we know is the same as solving
linear congruences mod n. Assume n > 1 is an integer, and that a, b are integers.

(a) Show that the congruence ax ≡ b mod n is solvable if and only if gcd(a, n) | b.

(b) If x0 is a solution to ax ≡ b mod n, prove that all the solutions to [a]x = [b] in Z/nZ are
[x0 + n

gcd(a,n)k] for k = 0, 1, . . . , (a, n)− 1. (Remember: [x] denotes the congruence class of x

mod n, and that the elements of Z/nZ are congruence classes, not numbers!)

(c) Solve the congruences 1723x ≡ 3574 mod 4914 and 126x ≡ 91 mod 217. Your answer should
be a single congruence class in each case: x ≡ mod .

(d) Write down the solutions to [1723]x = [3574] in Z/4914Z and [126]x = [91] in Z/217Z.

In particular, this problems shows that it’s possible for a linear equation in Z/nZ to have more
than one solution in Z/nZ, which is very different from how things work in Z!

Solution:

(a) Suppose that there is a solution x0 to ax ≡ b mod n. This means ax0 ≡ b mod n, so
ax0 = b+nk for some integer k. This says ax0−nk = b, and since gcd(a, n) divides both
a and n, it therefore divides b because it’s a linear combination of a and n. Conversely,
suppose that gcd(a, n) | b. Then we can write b = gcd(a, n)k for some integer k. By
Bezout’s lemma, we can find integers x, y such that ax + ny = gcd(a, n). Multiplying by
k says a(xk) + n(yk) = b, so taking this mod n says a(xk) ≡ b mod n. Therefore, xk is a
solution to ax ≡ b mod n.

(b) First, we point out that solutions to ax ≡ b mod n correspond to solutions to ax+ny = b.
Indeed, if ax ≡ b mod n then there exists an integer y such that ax = b + ny, so
ax + n(−y) = b produces the solution (x,−y) to the equation ax + ny = b. On the
other hand, suppose that ax + ny = b for some integers x, y. Then taking this mod n
says ax ≡ b mod n, so we’ve solved the congruence.
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Since we start with a solution x0 to ax ≡ b mod n, this means there is some y0 such that
ax0 +ny0 = b. Recall from homework 3 that all solutions to the equation ax+ny = b are
given by x = x0 + n′k and y = y0 − a′k for k ∈ Z, where n′ = n

gcd(a,n) , and a′ = a
gcd(a,n) .

Taking this mod n says all solutions to ax ≡ b mod n are given by x ≡ x0 + n′k mod n
for k ∈ Z. Therefore, the solutions to [a]x = [b] in Z/nZ are given by the different
congruence classes [x0 + n′k] for k ∈ Z. We just need to see what these different classes
are. Set xk = x0 + n′k, so we wish to know when does [xk] = [x`] for integers k, `. This
happens precisely when xk ≡ x` mod n, and we see that xk ≡ x` mod n if and only if
we have n′k ≡ n′` mod n. This says n′(k − `) ≡ 0 mod n, which is the same as saying
n | n′(k − `). Equivalently, dividing out by n′ says this happens precisely when d | k − `,
i.e. k ≡ ` mod d where d = gcd(a, n). What we’ve shown is that [xk] depends on the
congruence class of k mod d, and so running through k = 0, 1, . . . , d − 1 gives us all
possible congruence classes for [xk], and therefore all solutions to the equation.

(c) Running the Euclidean algorithm says gcd(1723, 4914) = 1, so x ≡ 1723−1 · 3574 mod
4914. Performing back substitution says 1723 ·(−713 ·3574)+4914 ·(250 ·3574) = 3574, so
taking this mod 4914 says 1723−1 ≡ −713 · 3574 mod 4914 ≡ 2104 mod 4914. Therefore,
the solution is x ≡ 2104 mod 4914. For the other congruence, since gcd(126, 217) = 7
and 7 | 91, we can divide out by 7 to get the congruence 18x ≡ 13 mod 31, so x ≡
18−1 · 13 mod 31. Running the Euclidean algorithm and performing back substitution
says 31 · 7 + 18 · (−12) = 1, so 18−1 ≡ −12 mod 31 ≡ 19 mod 31. This says x ≡
19 · 13 mod 31 ≡ 30 mod 31.

(d) By part (b), there is a unique solution to [1723]x = [3574] in Z/4914Z, and it’s given by
[2104] by the previous part. There are 7 solutions to [126]x = [91] in Z/217Z given by
[30 + 31k] for k = 0, 1, . . . , 6. These are [30], [61], [92], [123], [154], [185], [216].

5. The goal of this problem is to demonstrate how working in Z/nZ can detect obstruction to
equations having integer solutions.

(a) Write down the perfect squares in Z/8Z and perfect cubes in Z/9Z.

(b) Prove that x3 + y3 + z3 = 4 has no integer solutions. For what other integers can you replace
4 with and have your same argument work?

(c) Prove that there are no integers m,n such that 3m + 3n + 1 is a perfect square.

Solution:

(a) By literally just squaring every element in Z/8Z we see that the perfect squares are
[0], [1], [4], and similarly the perfect cubes in Z/9Z are [0], [1], [8].

(b) Suppose that x3 + y3 + z3 = 4 has integer solutions. Then the same equation would have
to hold mod 9 as well, so [x]3 +[y]3 +[z]3 = [4] in Z/9Z. By (a), the only perfect cubes in
Z/9Z are [0], [1], [8] which we can write as [0], [1], [−1]. It’s then quite clear there’s no way
to take three elements from the set {[0], [1], [−1]} and add them to get [4], so there is no
solution mod 9. This is a contradiction, so we couldn’t have had any integer solutions to
begin with. The easiest generalization is that we can replace 4 with any integer congruent
to 4 mod 9 and the same argument will work. Slightly less obvious is that any integer
congruent to 5 mod 9 also works as well ([5] is the only other element in Z/9Z that you
can’t get from a sum of three elements in the set {[0], [1], [−1]}).

(c) Suppose there were integers m,n such that 3m +3n +1 is a perfect square. Then it would
have to be a perfect square in Z/8Z as well. By (a), the perfect squares in Z/8Z are
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[0], [1], [4], so let’s show that [3]m + [3]n + [1] is never any of these. Note that if k is even,
then [3]k = [1] and if k is odd, then [3]k = [3]. Therefore, there are four possibilities for
the value of this sum: it’s either [1] + [1] + [1] = [3], [1] + [3] + [1] = [5], [3] + [1] + [1] = [5],
or [3] + [3] + [1] = [7]. In all cases, it’s never [0], [1] or [4], so we get a contradiction.
Therefore, 3m + 3n + 1 is never a perfect square.

6.

(a) Prove that if p is prime, then (p−1)! ≡ −1 mod p (Hint: try pairing up integers in the product
in a useful way).

(b) Prove that if n > 4 is composite, then (n− 1)! ≡ 0 mod n.

Combining these two parts says than an integer is prime if and only if n - (n− 1)!. Of course, this
is a very bad way of checking that an integer is prime, because (n− 1)! gets very large, very fast!

Solution:

(a) Since p is prime, every integer a between 1 and p − 1 is invertible mod p. Therefore
in the product (p − 1)!, for each a we pair it up with its inverse mod p and then the
product reduces to 1 mod p. The only question we have to ask is when is an integer it’s
own inverse mod p? This is when we don’t have a different element to pair with. Saying
a is it’s own inverse mod p means a2 ≡ 1 mod p, which we have proven before only has
solutions a ≡ ±1 mod p. This says the only elements in the product that don’t have
something to pair up with are 1 and p − 1. Therefore, (p − 1)! ≡ 1 · (p − 1) mod p ≡
p− 1 mod p ≡ −1 mod p.

(b) Since n is composite, we can write n = ab with 1 ≤ a, b ≤ n− 1. If a and b are distinct,
then they both appear as terms in (n− 1)! so we have (n− 1)! ≡ 0 mod n. Otherwise, if
a = b then n = a2 for some a. We obviously have a appearing as a term in (n−1)!, so we
need to find another multiple of a in order to be divisible by a2. Well, we have 2a < a2

as long as a > 2, which is true because n > 4. Therefore, 2a appears as a term in the
product, so (n− 1)! ≡ 0 mod n and we’re done.
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