Solutions to Homework 3
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1. Recall from worksheet 3 the least common multiple of a and b, denoted lem(a, b). It is defined
as the smallest positive integer ¢ such that:

i. It’s a common multiple of a and b, i.e. a | £ and b | £.
ii. It’s the smallest such common multiple, i.e. if a | ¢ and b | ¢, then ¢ < c.

Prove that if ged(a,b) = 1, then lem(a, b) = ab.

Solution: Let ¢ = lem(a,b). Since a | ab and b | ab then by definition, we have ¢ < ab. By
Bezout’s lemma, there exist integers x,y such that ax + by = 1. Multiplying by ¢, we have
alr+bly=~. Asa|land b |, we can write £ = ak = bm for some integers k, m. Plugging in
yields abmax + abky = £. Since the left hand side is divisible by ab, this means ab | ¢, so ab < £.
Combining the two inequalities yields ab = ¢.

2. Define a sequence of numbers F;, as follows:

Fp=1 F=1
Fn+1:Fn+Fn—1a TIZl

This sequence starts 1,1,2,3,5,8,13,21,.... This sequence is called the Fibonacci sequence, and
the number F, is called the n'* Fibonacci number. Prove by induction that for all n > 1, the
number of steps required for the Euclidean algorithm on the pair (F}, 11, F},) to terminate is exactly
n.

Solution: First, we start with the base case. We have Fy = 2 and F} = 1, and the division
algorithm says 2 = 1-24-0, so the Euclidean algorithm finishes after the first step. Now suppose
that for some k, the Euclidean algorithm on (Fj41, F}) takes k steps to stop. We now want to
run the Euclidean algorithm on Fjy1o and Fj.1. By definition, we have Fy o = Fyyq -1+ Fy.
It’s clear that Fyi1 > Fj because each Fibonacci number is obtained by adding a positive
integer to the previous Fibonacci number, so this equation is then the form given by the di-
vision algorithm, i.e. the first step in the Euclidean algorithm. The Euclidean algorithm then
continues on by running it on the pair (Fj11, Fy) which by induction hypothesis, terminates
in k steps, so the Euclidean algorithm on (Fgy2, Fi+1) terminates in k + 1 steps as desired.
Therefore by induction, we’re done.

Remark: Fibonacci numbers represent the “worst case scenario” for the Euclidean algo-
rithm, in the sense that if you have positive integers a,b such that the Euclidean algorithm
takes n steps, one can show that a > F, 41 and b > F,.

3. In this problem, you will give a proof that v/2 is irrational using the Euclidean algorithm.
Suppose that v/2 was rational, so it can be written as v/2 = ¢ for some positive integers a, b with

b+#0.



(a) Show that a =b-1+ (a—b) with 0 < a—b < b, so that this is the first step in the Euclidean
algorithm on the pair (a,b) with ¢y =1 and 1y = a — b.

(b) Write down the next step in the Euclidean algorithm by performing the division algorithm on
the pair (b,a — b). What is g7 What is the ratio r1/r2? (Your answers should be numbers,
not involving the letters a, b).

(¢) Prove that ¢, = g2 and T’;—;l = it for all n > 2. (Hint: prove these both simultaneously via
induction.)

(d) Explain why the truth of the statement in (c¢) yields a contradiction, therefore proving that
v/2 must not be rational.

Solution:

(a) Note that v/2 > 1 because 2 > 1. In particular, this says a > b so a — b > 0. We have
a —b < b because b > 0, the equation a = b- 1+ (a — b) satisfies the conditions for ¢,r in
the division algorithm. By uniqueness, we must have ¢; = 1 and ry = a — b.

(b)Wehaveﬁzé. NotethataT_b:%flz\/?fl,s GL: —erl
To figure out Wh&% q2 and 79 must be, suppose we have b = (a — b) q2 + ro with
0<ro < a —b. Then af = g2 + -%. In particular, this says g2 must be the integer
part of 25 because -2 < 1. Note that 2 < V241 < 3,50 q; = 2. This then says
V241 _2—|—a7b = 2—|—%, SO :—f = V2 — 1 gives :—; = V2 + 1. To figure out what
) actually is, we have b = (a — b) + (3b — 2a), and note that 32=2¢ — 3(b;fz+a =
-3+ -5 3+ab— = -3+ 1f—\/§—1<1 We also see that
0 < 3b—2a because \f 2<3/2as2< 9/4 so this sa;s that 3b— 2a satisfies the remainder

bound, yielding ro = 3b — 2a.

(c) We wish to prove that ¢, = 2 and ==t = V241 for all n > 2. The base case was proven

above in part (b), so assume it holds for all 1,2, ...,k that ¢, = 2 and T’;—;l =v2+1. We
wish to show it holds for k£ 4 1 as well. One of the steps in the Euclidean algorthim tells

us that rg_1 = rgqrr1 + rE+1 with 0 < i1 < 1k, so dividing says % = Qr+1 + “1.

Tk—1

By assumption, = V241, 50 qpy1 = 2 because similarly as above, it must be the
integer part of v/2 4 1. We then have /2 +1 =2+ T‘"’“, s0vV2-—1= T’;—:l then yields
= /2 + 1 as desired. Therefore by induction, we are done.

Tk+1

(d) Since T:ﬁ—’l =14 /2 for all n > 2, we can never have r,, = 0 for any n. This means the
Euclidean algorithm on a,b cannot ever terminate, which is a contradiction, because we
proved that for any pair of integers it must stop. Therefore, v/2 cannot be rational.

4. For each of the pairs of integers (a, b) below, do the following:
(i) Run the Euclidean algorithm to compute ged(a, b).
(ii) Use back substitution to find integers x,y such that ax + by = ged(a, b).
(a) (504,94)
(b) (—1260,816)
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Solution: Details omitted since everyone knew what they were doing!
(a) 504 - (—11) + 94 - (59) = 2, so we may take x = —11 and y = 59.
(b) —1260- (11) + 816 - (17) = 12, so we may take z = 11 and y = 17.

5. Let ¢ € Z. Prove that ax + by = ¢ has integer solutions if and only if ged(a, b) | c.

Solution: Suppose that az+by = c has integer solutions, so that there actually are integers z, y
with ax+by = c. Since ged(a, b) divides a and b, it therefore must divide the linear combination
ax + by, which equals ¢. On the other hand, suppose that ged(a,b) | ¢, so ¢ = ged(a,b)k for
some integer k. By Bezout’s lemma, there are integers z,y such that ax + by = ged(a,b), so
multiplying by k yields a(zk) + b(yk) = ¢, which says the equation has the integer solution
(xk, yk).

6. Let d = ged(a, b) and suppose that d | ¢, so that by the previous problem, the equation az+by = ¢
has integer solutions. Suppose you are given xg,yo € Z such that azg + byg = c¢. Let a = da’ and
b = db' for some integers a’,b’. Define, for any k € Z,

rr =20 + 'k and Ye = Yo — a'k.

Note: Try to avoid the use of fractions throughout this problem! You don’t actually need them
anywhere!

(a) Prove that for all k € Z, (z, yx) is a solution to the equation az + by = c.

(b) Now assume that (x,y) is another solution to the equation ax + by = ¢. Prove that there is
some k € Z for which z = z, and y = yj.

(c) Find all integer solutions to the equation 37z + 47y = 103.

Solution:
(a) Plugging in, we have a(zg 4+ b'k) + b(yg — a’'k) = axg + byy = c.

(b) Suppose we have two solutions, (xg, y9) and (z,y). This says azg+byy = c and ax+by = ¢,
so equating yields axo+byo = ax+by. Combining like terms, we find a(z—x0) = b(yo—y).
Since a = a’d and b = b'd, plugging in then gives a’(x—x¢) = b’ (yo—y). Since a’ | ¥’ (yo—vy)
and o', b are relatively prime, we must have a’ | (yo — y) so there is some k such that
Yo — y = a'k. Similarly, there is some ¢ such that z — xg = b'/. Plugging these in says
a't'l =bad'k, so k = L. This says that x = o +b'k = z, and y = yo —a’k = y;, as desired.

(c) First, we need to find one solution. Running the Euclidean algorithm and performing
back substitution tells us that 37 - 14 4+ 47 - (=11) = 1, so multiplying by 103 says
37-(14-103) + 37 - (=11 - 103) = 103. Therefore, we have zo = 14 - 103 = 1442 and
yo = —11-103 = —1133. Since ged(37,47) = 1, we have o/ = 37 and & = 47. The
previous parts say the solutions are given by (xy, yx) for integers k, so the solution set is
{(zk,yx) + k € Z} = {(1442 + 47k, —1133 — 37k) : k € Z}.
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