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1. Recall from worksheet 3 the least common multiple of a and b, denoted lcm(a, b). It is defined
as the smallest positive integer ` such that:

i. It’s a common multiple of a and b, i.e. a | ` and b | `.

ii. It’s the smallest such common multiple, i.e. if a | c and b | c, then ` ≤ c.

Prove that if gcd(a, b) = 1, then lcm(a, b) = ab.

Solution: Let ` = lcm(a, b). Since a | ab and b | ab then by definition, we have ` ≤ ab. By
Bezout’s lemma, there exist integers x, y such that ax + by = 1. Multiplying by `, we have
a`x+ b`y = `. As a | ` and b | `, we can write ` = ak = bm for some integers k,m. Plugging in
yields abmx+ abky = `. Since the left hand side is divisible by ab, this means ab | `, so ab ≤ `.
Combining the two inequalities yields ab = `.

2. Define a sequence of numbers Fn as follows:

F0 = 1, F1 = 1

Fn+1 = Fn + Fn−1, n ≥ 1

This sequence starts 1, 1, 2, 3, 5, 8, 13, 21, . . . . This sequence is called the Fibonacci sequence, and
the number Fn is called the nth Fibonacci number. Prove by induction that for all n ≥ 1, the
number of steps required for the Euclidean algorithm on the pair (Fn+1, Fn) to terminate is exactly
n.

Solution: First, we start with the base case. We have F2 = 2 and F1 = 1, and the division
algorithm says 2 = 1·2+0, so the Euclidean algorithm finishes after the first step. Now suppose
that for some k, the Euclidean algorithm on (Fk+1, Fk) takes k steps to stop. We now want to
run the Euclidean algorithm on Fk+2 and Fk+1. By definition, we have Fk+2 = Fk+1 · 1 + Fk.
It’s clear that Fk+1 > Fk because each Fibonacci number is obtained by adding a positive
integer to the previous Fibonacci number, so this equation is then the form given by the di-
vision algorithm, i.e. the first step in the Euclidean algorithm. The Euclidean algorithm then
continues on by running it on the pair (Fk+1, Fk) which by induction hypothesis, terminates
in k steps, so the Euclidean algorithm on (Fk+2, Fk+1) terminates in k + 1 steps as desired.
Therefore by induction, we’re done.

Remark: Fibonacci numbers represent the “worst case scenario” for the Euclidean algo-
rithm, in the sense that if you have positive integers a, b such that the Euclidean algorithm
takes n steps, one can show that a ≥ Fn+1 and b ≥ Fn.

3. In this problem, you will give a proof that
√

2 is irrational using the Euclidean algorithm.
Suppose that

√
2 was rational, so it can be written as

√
2 = a

b for some positive integers a, b with
b 6= 0.
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(a) Show that a = b · 1 + (a− b) with 0 ≤ a− b < b, so that this is the first step in the Euclidean
algorithm on the pair (a, b) with q1 = 1 and r1 = a− b.

(b) Write down the next step in the Euclidean algorithm by performing the division algorithm on
the pair (b, a − b). What is q2? What is the ratio r1/r2? (Your answers should be numbers,
not involving the letters a, b).

(c) Prove that qn = q2 and rn−1

rn
= r1

r2
for all n ≥ 2. (Hint: prove these both simultaneously via

induction.)

(d) Explain why the truth of the statement in (c) yields a contradiction, therefore proving that√
2 must not be rational.

Solution:

(a) Note that
√

2 > 1 because 2 > 1. In particular, this says a > b so a − b > 0. We have
a− b < b because b > 0, the equation a = b · 1 + (a− b) satisfies the conditions for q, r in
the division algorithm. By uniqueness, we must have q1 = 1 and r1 = a− b.

(b) We have b
a−b = 1

a−b
b

. Note that a−b
b = a

b − 1 =
√

2 − 1, so b
a−b = 1√

2−1 =
√

2 + 1.

To figure out what q2 and r2 must be, suppose we have b = (a − b) · q2 + r2 with
0 ≤ r2 < a − b. Then b

a−b = q2 + r2
a−b . In particular, this says q2 must be the integer

part of b
a−b because r2

a−b < 1. Note that 2 <
√

2 + 1 < 3, so q2 = 2. This then says√
2 + 1 = 2 + r2

a−b = 2 + r2
r1

, so r2
r1

=
√

2 − 1 gives r1
r2

=
√

2 + 1. To figure out what

r2 actually is, we have b = (a − b) · 2 + (3b − 2a), and note that 3b−2a
a−b = 3(b−a)+a

a−b =

−3 + a
a−b = −3 + 1

a−b
a

= −3 + 1
1− b

a

= −3 + 1
1− 1√

2

=
√

2 − 1 < 1. We also see that

0 ≤ 3b−2a because
√

2 < 3/2 as 2 < 9/4, so this says that 3b−2a satisfies the remainder
bound, yielding r2 = 3b− 2a.

(c) We wish to prove that qn = 2 and rn−1

rn
=
√

2 + 1 for all n ≥ 2. The base case was proven

above in part (b), so assume it holds for all 1, 2, . . . , k that qk = 2 and rk−1

rk
=
√

2+1. We
wish to show it holds for k + 1 as well. One of the steps in the Euclidean algorthim tells
us that rk−1 = rkqk+1 + rk+1 with 0 ≤ rk+1 < rk, so dividing says rk−1

rk
= qk+1 + rk+1

rk
.

By assumption, rk−1

rk
=
√

2 + 1, so qk+1 = 2 because similarly as above, it must be the

integer part of
√

2 + 1. We then have
√

2 + 1 = 2 + rk+1

rk
, so
√

2 − 1 = rk+1

rk
then yields

rk
rk+1

=
√

2 + 1 as desired. Therefore by induction, we are done.

(d) Since rn−1

rn
= 1 +

√
2 for all n ≥ 2, we can never have rn = 0 for any n. This means the

Euclidean algorithm on a, b cannot ever terminate, which is a contradiction, because we
proved that for any pair of integers it must stop. Therefore,

√
2 cannot be rational.

4. For each of the pairs of integers (a, b) below, do the following:

(i) Run the Euclidean algorithm to compute gcd(a, b).

(ii) Use back substitution to find integers x, y such that ax + by = gcd(a, b).

(a) (504, 94)

(b) (−1260, 816)
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Solution: Details omitted since everyone knew what they were doing!

(a) 504 · (−11) + 94 · (59) = 2, so we may take x = −11 and y = 59.

(b) −1260 · (11) + 816 · (17) = 12, so we may take x = 11 and y = 17.

5. Let c ∈ Z. Prove that ax + by = c has integer solutions if and only if gcd(a, b) | c.

Solution: Suppose that ax+by = c has integer solutions, so that there actually are integers x, y
with ax+by = c. Since gcd(a, b) divides a and b, it therefore must divide the linear combination
ax + by, which equals c. On the other hand, suppose that gcd(a, b) | c, so c = gcd(a, b)k for
some integer k. By Bezout’s lemma, there are integers x, y such that ax + by = gcd(a, b), so
multiplying by k yields a(xk) + b(yk) = c, which says the equation has the integer solution
(xk, yk).

6. Let d = gcd(a, b) and suppose that d | c, so that by the previous problem, the equation ax+by = c
has integer solutions. Suppose you are given x0, y0 ∈ Z such that ax0 + by0 = c. Let a = da′ and
b = db′ for some integers a′, b′. Define, for any k ∈ Z,

xk = x0 + b′k and yk = y0 − a′k.

Note: Try to avoid the use of fractions throughout this problem! You don’t actually need them
anywhere!

(a) Prove that for all k ∈ Z, (xk, yk) is a solution to the equation ax + by = c.

(b) Now assume that (x, y) is another solution to the equation ax + by = c. Prove that there is
some k ∈ Z for which x = xk and y = yk.

(c) Find all integer solutions to the equation 37x + 47y = 103.

Solution:

(a) Plugging in, we have a(x0 + b′k) + b(y0 − a′k) = ax0 + by0 = c.

(b) Suppose we have two solutions, (x0, y0) and (x, y). This says ax0+by0 = c and ax+by = c,
so equating yields ax0+by0 = ax+by. Combining like terms, we find a(x−x0) = b(y0−y).
Since a = a′d and b = b′d, plugging in then gives a′(x−x0) = b′(y0−y). Since a′ | b′(y0−y)
and a′, b′ are relatively prime, we must have a′ | (y0 − y) so there is some k such that
y0 − y = a′k. Similarly, there is some ` such that x − x0 = b′`. Plugging these in says
a′b′` = b′a′k, so k = `. This says that x = x0 +b′k = xk and y = y0−a′k = yk as desired.

(c) First, we need to find one solution. Running the Euclidean algorithm and performing
back substitution tells us that 37 · 14 + 47 · (−11) = 1, so multiplying by 103 says
37 · (14 · 103) + 37 · (−11 · 103) = 103. Therefore, we have x0 = 14 · 103 = 1442 and
y0 = −11 · 103 = −1133. Since gcd(37, 47) = 1, we have a′ = 37 and b′ = 47. The
previous parts say the solutions are given by (xk, yk) for integers k, so the solution set is
{(xk, yk) : k ∈ Z} = {(1442 + 47k,−1133− 37k) : k ∈ Z}.
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