
Solutions to Midterm 2

Tim Smits

1. Consider the vector space V = P (R) of polynomials with real coefficients, endowed with the
unique inner product structure such that the basis B = {xi : i ≥ 0} of V is an orthonormal set.

(a) Fix n ≥ 1 and define T (g)(x) = xng(x) for g ∈ V . Find an adjoint T ∗ of T .

(b) Find the subspace W = {w ∈ V : TT ∗(w) = T ∗T (w)}.

(c) Is W T -invariant? T ∗-invariant?

(d) Let U : V → V be the operator U(g)(x) = g(x+ 1). Prove that U has no adjoint with respect
to the given inner product.

Solution:

(a) I claim that T ∗(xi) =

{
xi−n i ≥ n
0 i < n

. To do so, we just check that T ∗ satisfies the defini-

tion of the adjoint, of which it’s sufficient to just check on basis vectors by bilinearity of the
inner product. Fix i and let j be arbitrary. If i ≥ n, we have 〈T (xj), xi〉 = 〈xj+n, xi〉 =
δj+n,i, and 〈xj , T ∗(xi)〉 = 〈xj , xi−n〉 = δj,i−n. Note that j+n = i if and only if j = i−n,
so these agree. If i < n, we find that δj+n,i = 0 and 〈xj , T ∗(xi)〉 = 〈xj , 0〉 = 0. Therefore,
T ∗ is the adjoint of T as desired.

Note: one can deduce such a formula for T ∗ in a few ways. One such way is as follows:
let R∞0 be the space of sequences of real numbers that are eventually 0. Recall the
standard basis of this vector space is given by {ei : i ≥ 1} where ei is the vector with 1
in the i-th component and 0 everywhere else. The standard inner product in Rn extends
to an inner product on R∞0 in the obvious way that makes {ei} orthonormal, and so
the map P (R) → R∞0 given by xi → ei gives an isomorphism of inner product spaces.
Under this isomorphism, T is the right shift operator that sends (a1, a2, . . . , 0, 0, . . .) to
(0, 0, . . . , 0, a1, a2, . . . , 0, . . .). The adjoint is then given by the left shift operator, which
sends (a1, a2, . . . , 0, . . . , ) to (an+1, . . . , 0, . . .), and so converting back to polynomials give
the above formula.

(b) Note that T ∗T = I, so we want to find the largest subspace W ⊂ V such that TT ∗ = I.

We compute that TT ∗(xi) =

{
xi i ≥ n
0 i < n

. Taking W = Span{xi : i ≥ n} clearly gives

the desired result.

(c) Clearly W is T -invariant, but it’s not T ∗-invariant. For example, T ∗(xn) = 1 is not in
W .

(d) Suppose that U had an adjoint. Then for any i, we would have 〈U(xi), 1〉 = 〈xi, U∗(1)〉.
Since U(xi) = (x + 1)i has constant term 1, we see 1 = 〈U(xi), 1〉 = 〈xi, U∗(1)〉. The
previous expression is the coefficient of xi in U∗(1), which gives a contradiction because
U∗(1) has non-zero coefficients only up until it’s degree.
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2. Let V be a finite dimensional complex inner product space. Let a ∈ C and let T : V → V be a
non-zero linear operator on V such that T ∗ = aT .

(a) Show that |a| = 1.

(b) Prove that every eigenvalue of T is on a line ` in C through the origin, and find the angle
φ ∈ [0, π) between the x-axis and `, going from the x-axis to ` in the counterclockwise
direction.

(c) Show that T is a product of a self-adjoint operator and a unitary operator.

Solution:

(a) Note that T = (T ∗)∗ = (aT )∗ = āT ∗ = |a|2T . Since T is non-zero, there is v ∈ V such
that T (v) 6= 0, so T (v) = |a|2T (v) says (|a|2 − 1)T (v) = 0. This forces |a| = 1 as desired.

(b) Write a = eiθ. Then let λ be an eigenvalue of T with eigenvector v. Note that T ∗ = aT
means that T is normal, so T ∗ has v as an eigenvector as well, with eigenvalue λ̄. This
says λ̄ = λeiθ. Writing λ = reiφ for some r, φ, we have re−iφ = rei(θ+φ). This tells us
that −φ = θ+ φ (up to a multiple of 2π), so that φ = −θ/2. Since θ ∈ [0, 2π) converting
φ to an angle in [0, π) gives φ = π − θ/2. This says every eigenvalue of T lies on the line
φ = π − θ/2.

(c) Since T is normal, it’s orthogonally diagonalizable. Let {v1, . . . , vn} be an orthonormal
eigenbasis of V , so that T (vi) = λivi. We may write λi = |λi|eiφ where φ is as in the
above part. Define S(vi) = |λi|vi and U(vi) = eiφvi, so that T = SU . Then [S]β is a
diagonal matrix of real numbers, so that S is self-adjoint. We also have [U ]β is a diagonal
matrix of complex numbers on the unit circle, so that [U ]β has orthonormal columns
making U unitary.

3. Let T be an injective normal operator on R4 such that T ∗ = T 2 and that does not have 1 as an
eigenvalue. Find the minimal polynomial mT and the characteristic polynomial cT of T .

Solution: Note that T = (T ∗)∗ = (T 2)∗ = (T ∗)2 = T 4. This says that p(x) = x4 − x kills T ,
so mT divides x(x− 1)(x2 + x+ 1), so mT has possible factors x, x− 1, x2 + x+ 1. Since T is
injective, 0 is not an eigenvalue, and by assumption, T does not have 1 as an eigenvalue. The
linear factors of mT correspond to eigenvalues of T , so this forces mT (x) = x2 + x + 1. Since
cT and mT have the same irreducible factors in R[x], this forces cT (x) = (x2 + x+ 1)2 because
it has degree 4.

To see why cT and mT have the same irreducible factors, suppose that cT (x) = mT (x)P (x)
for some irreducible quadratic P (x) with P (x) 6= mT (x). Over C, P (x) has some root, say
r. Since roots of real quadratic polynomials come in conjugate pairs, the other root must be
r̄. As mT (x) 6= P (x), r is not a root of mT (x), because the coefficients of a polynomial are
determined by its roots. But this then says that r is an eigenvalue of T (since it’s a root of
cT (x)), and therefore is a root of mT , a contradiction.

4. Consider the conic section x2 + 4y2 + z2 + 6xz − 4y − 4
√

2z = 1 in R3. Find a rigid motion
f : R3 → R3 such that the conic takes the form aX2 + bY 2 + cZ2 = 1 for some a, b, c ∈ R when
expressed in the variables (X,Y, Z) = f(x, y, z).
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Solution: Let β be the standard basis of R3 and let v ∈ R3 with [v]β = (x, y, z). We may

rewrite the conic as [v]tβA[v]β + B[v]β = 1, where A =

1 0 3
0 4 0
3 0 1

 and B =
[
0 −4 −4

√
2
]
.

One can check that A has eigenvalues λ = 4, 2 with orthonormal bases of E4 and E2 given
by {v1, v2} = {{1/

√
2, 0, 1/

√
2), (0, 1, 0)} and {v3} = {(−1/

√
2, 0, 1/

√
2)} respectively. Then

γ = {v1, v2, v3} is an eigenbasis of R3 for A. Let Sβγ be the change of basis matrix from γ to β.

By definition, we have Sβγ =

1/
√

2 0 −1/
√

2
0 1 0

1/
√

2 0 1/
√

2

, and [v]β = Sβγ [v]γ . Letting [v]γ = (a, b, c),

plugging this in we find 4a2 + 4b2 − 2c2 − 4a − 4b − 4c = 1. Completing the square yields
4(a−1/2)2 + 4(b−1/2)2−2(c+ 1)2 = 1. Setting X = a−1/2, Y = b−1/2 and Z = c+ 1 gives
4X2 + 4Y 2 − 2Z2 = 1. Since [v]γ = Sγβ [v]β and Sγβ = (Sβγ )−1 = (Sβγ )t, solving for (a, b, c) says

the desired rigid motion is the map (x, y, z)→ (x/
√

2+z/
√

2−1/2, y−1/2,−x/
√

2+z/
√

2+1).
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