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7.2.6. Let A be an n× n matrix whose characteristic polynomial splits. Prove that A and At are
similar.

Solution: Let J be a Jordan block of size p× p and let γ = {e1, . . . , ep} be the standard basis
and set γ′ = {ep, . . . , e1} = {e′1, . . . , e′p}. Then we have Je′i = Jep−i = λep−i + ep−i−1 =

λe′i + e′i+1. It’s then not too hard to see that [J ]γ′ = J t. This means that Sγ
′

γ JS
γ
γ′ =

[J ]γ′ = Sγ
′

γ J(Sγ
′

γ )−1 = [J ]γ′ = J t, so that a Jordan block is similar to its transpose. Let

J = Diag(J1, . . . , Jr) be the Jordan canonical form of A, and suppose that SiJiS
−1
i = J ti .

This says that S = Diag(S1, . . . , Sr) conjugates J into J t. Since A = BJB−1 for some B and
SJS−1 = J t, we have At = (Bt)−1J tBt = (Bt)−1(SJS−1)Bt = (S−1Bt)−1J(S−1Bt). This
says that At is similar to J and since A is similar to J , we deduce that A and At are similar
and have the same Jordan form.

7.2.13. Let T be a nilpotent operator on an n-dimensional vector space V , and suppose that p is
the smallest positive integer for which T p = 0. Prove the following.

(b) There is a sequence of ordered bases β1, β2, . . . , βp such that βi is a basis for ker(T i) and βi+1

contains βi for 1 ≤ i ≤ p− 1.

(c) Let β = βp as above. Then [T ]β is an upper triangular matrix with each diagonal entry equal
to zero.

(d) The characteristic polynomial of T is xn.

Solution:

(b) We have ker(T i) ⊂ ker(T i+1) for all i. Let β1 be a basis of ker(T ), and define β2 by
extending β1 to a basis of ker(T 2). Inductively define βi+1 by extending the basis βi of
ker(T i) to a basis of ker(T i+1) .

(c) Note that the inclusion above is strict: suppose that ker(T i) = ker(T i+1) for some i. Then
if x ∈ ker(T j) for j ≥ i+1, we have T j(x) = T i+1(T j−i−1(x)) = 0. This says T j−i−1(x) ∈
ker(T i+1) = ker(T i), so that T j−1(x) = 0 says ker(T j) = ker(T j−1). Applying this
inductively shows that ker(T i) = ker(T j) for all j ≥ i. This says V = ker(T p) =
ker(T i) so that T i = 0, a contradiction to the minimality of p. We may then write
β = β1 ∪ (β2 \ β1) ∪ (β3 \ β2) ∪ . . . ∪ (βp \ βp−1) as a partition of β. Note that each
set βi \ βi−1 consists of the basis vectors that are in ker(T i) but not in ker(T i−1), i.e.
they’re the vectors we threw in to extend the basis. If v ∈ ker(T ) then it corresponds to
a zero column of [T ]β . Now for each v ∈ β \ β1, we have v ∈ βi \ βi−1 for some unique
i. Then T (v) ∈ ker(T i−1), so it can be written as a linear combination of vectors in
ker(T i−1) = β1 ∪ (β2 \ β1)∪ . . . ∪ (βi−1 \ βi−2). In particular, these vectors are all before
v in our ordering of β, which says that [T ]β is upper triangular as desired.

1



(d) The determinant of an upper triangular matrix is the product of its diagonal entries. In
particular, this says that cT = det(xI − [T ]β) = xn.

1. Let A =


3 1 0 0
0 0 1 0
−1 −3 3 0
1 3 −1 2

. Show that cA splits, and find the Jordan canonical form B of A

and an invertible matrix Q such that B = Q−1AQ.

Solution: It’s an easy computation to check that cT (x) = (x− 2)4, so that cT splits. To find
the Jordan form of A, note that A3 = 0 and A2 6= 0, so that mT (x) = x3. The constraints
on the Jordan form say that the largest size Jordan block appears is a 3 × 3 block, which

forces J =


2 0 0 0
0 2 1 0
0 0 2 1
0 0 0 2

. Next, we find a Jordan canonical basis for A. We seek a cycle

of length 1 and a cycle of length 3. A cycle of length 1 is merely an eigenvector. We have

A−2I =


1 1 0 0
0 −2 1 0
−1 −3 1 0
1 3 −1 0

, so let’s pick v1 = e4. To get a cycle of length 3, we seek a vector

v2 such that (A− 2I)3v2 = 0 but (A− 2I)2v2 6= 0. Since (A− 2I)3 = 0 anyway, we just need
a vector v2 such that (A− 2I)2v2 6= 0. Note that e1 fits the bill, so a Jordan canonical basis is
γ = {e4, (A− 2I)2e1, (A− 2I)e1, e1} = {(0, 0, 0, 1), (1,−1,−2, 2), (1, 0,−1, 1), (1, 0, 0, 0)}. Take
Q to be the change of basis matrix Sβγ where β is the standard basis, and we have J = Q−1AQ
as desired.

3. Find the Jordan canonical forms and minimal polynomials of the nilpotent matrices A =
0 1 1 0 1
0 0 1 1 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 and B =


0 1 1 0 0
0 0 1 1 1
0 0 0 1 1
0 0 0 0 0
0 0 0 0 0

.

Solution: Note by computation that mA(x) = x3 and dim(ker(A)) = 3. This says we have
three Jordan blocks corresponding to λ = 0, and the largest sized block is 3, so we’re forced

to have two blocks of size 1. This says JA =


0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

. Similarly, we find that

mB(x) = x4, so that the Jordan form of B has a block of size 4. This forces a single remaining

block of size 5, so that JB =


0 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

.

4. Let T : V → V be a nilpotent linear transformation of F -vector spaces. Show that
∑k
i=0 aiT

i

with ai ∈ F is nilpotent if and only if a0 = 0.
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Solution: Write p(T ) =
∑k
i=0 aiT

i. First, suppose that a0 = 0. Then we may write p(T ) =

Tg(T ) with g(T ) =
∑k
i=1 aiT

i−1. Note that T and g(T ) commute because they’re both poly-
nomials in T . Since T is nilpotent, we have TN = 0 for some N and so p(T )N = TNg(T )N = 0.
This says that p(T ) is nilpotent. Conversely, suppose that p(T ) is nilpotent, say p(T )M = 0
for some M . we have a0I = p(T ) + g(T ) where g(T ) = a0I − p(T ). Since g(T ) has no constant
term, by what we just showed we must have that g(T )N = 0. By the binomial theorem, we

then have aN+M
0 I = (p(T ) + g(T ))N+M =

∑M+N
k=0

(
M+N
k

)
p(T )kg(T )N+M−k. For 0 ≤ k ≤ M ,

N + M − k ≥ N so g(T )N+M−k = 0. For M ≤ k ≤ M + N , we have p(T )k = 0, so that
aM+N
0 I = 0. This says aN+M

0 = 0, so that a0 = 0 as desired.
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