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6.6.6. Let T be a normal operator on a finite-dimensional inner product space. Prove that if T is
a projection, then T is also an orthogonal projection.

Solution: We know from previous homework that im(T )⊥ = ker(T ∗). Since T is normal, from
3a) here ker(T ) = ker(T ∗). This says im(T )⊥ = ker(T ) and im(T ) = ker(T )⊥ since V is finite
dimensional.

7.1.10 Let T be a linear operator on a finite-dimensional vector space whose characteristic poly-
nomial splits, and let λ be an eigenvalue of T .

(a) Suppose that γ is a basis for Kλ consisting of the union of q disjoint cycles of generalized
eigenvectors. Prove that q ≤ dim(Eλ).

(b) Let β be a Jordan canonical basis for T and suppose that J = [T ]β has q Jordan blocks with
λ in the diagonal positions. Prove that q ≤ dim(Eλ).

Solution:

(a) Each cycle in γ contains precisely one eigenvector. Therefore, γ contains q eigenvectors.
Since these eigenvectors are part of a basis, they’re linearly independent. Therefore, we
can find at least q linearly independent eigenvectors, which tells us that q ≤ dim(Eλ)
since the latter is the maximal number of linearly independent eigenvectors we can find.

(b) By definition of β, we have β = β1 ∪ . . .∪ βk where βi is a basis of Kλi
that is a union of

disjoint cycles. Since Jordan blocks correspond to cycles, the assumption of the problem
says that the basis βλ of Kλ breaks up into q disjoint cycles, so by the previous part we’re
done.

2. Let T : V → V be a normal operator on a finite dimensional inner product space. Show that
the minimal polynomial of T is a product of distinct, monic, irreducible factors of degree 1 and 2.

Solution: Pick a basis β of V and let [T ]β = A. First, suppose that V is a complex inner
product space. Then we know that A is diagonalizable over C, so the minimal polynomial of
A (which is the minimal polynomial of T ) has distinct linear factors. Now suppose that V is
a real inner product space, so that in particular, A is a real matrix. First, we show that the
minimal polynomial of A (viewed over R) is the same as the minimal polynomial of A (viewed
over C).

Let’s denote the potentially different minimal polynomials by mA,R and mA,C respectively.
Then since mA,R has real coefficients (which are in particular, complex numbers) we have
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mA,C | mA,R. Since both polynomials are monic, they’re equal if they have the same de-
gree. So suppose that deg(mA,C) < deg(mA,R). Then as A is a matrix with real entries,
it’s quite easy to see that mA,C(A) = 0, where mA,C is the polynomial with conjugate coeffi-
cients to mA,C. Then mA,C + mA,C is a polynomial with real coefficients of that kills A, but
deg(mA,C +mA,C) < deg(mA,R), which is a contradiction to the definition of mA,R. Therefore,
mA,C = mA,R so it makes sense to speak of “the” minimal polynomial.

To finish up the problem, we now know that viewing A as a complex matrix, the minimal
polynomial of A factors into a product of distinct linear factors in C. Since the minimal
polynomial is real, the complex roots come in conjugate pairs. Pairing them up yields an
irreducible real quadratic factor. Doing this for all such factors over C tells us that mA factors
into a product of distinct linear factors (corresponding to real roots) and irreducible quadratic
factors (corresponding to a pair of conjugate conplex roots) as desired.

3. Let g : Rn → Rn be a rigid motion, and let f : Rn → Rn be a translation. Show that g−1 ◦ f ◦ g
is also a translation.

Solution: Since g is a rigid motion, we may write g = h ◦ T for some orthogonal operator T
and translation h. Then g−1 = T−1 ◦ h−1, so g−1 ◦ f ◦ g = T−1 ◦ h−1 ◦ f ◦ h ◦ T . Note that
h−1 ◦ f ◦h = f , so g−1 ◦ f ◦ g = T−1 ◦ f ◦T . For v ∈ Rn, suppose that f(v) = v+x for fixed x.
Then (T−1 ◦ f ◦ T )(v) = v + T−1(x), so that g−1 ◦ f ◦ g is a translation by T−1(x) as desired.

4. Determine the number of all possible Jordan canonical forms (up to ordering) of linear transfor-
mations with cT = (x+ 3)8(x− 2)5(x− 4)2 and mT (x) = (x+ 3)5(x− 2)2(x− 4)2.

Solution: We know that the algebraic multiplicity of an eigenvalue is equal to the sum of the
sizes of the Jordan blocks for λi, and that the multiplicity of λi in the minimal polynomial is
the size of the largest Jordan block that appears in the Jordan canonical form of T . Combining
these two facts, we see the following:

λ = −3: We have a 5× 5 block and the sum of sizes of blocks must be 8. The possibilities for the
sizes of Jordan blocks (listed as tuples) are (5, 1, 1, 1), (5, 2, 1), or (5, 3).

λ = 2: We have a 2× 2 block and the sum of sizes of blocks must be 5. The possibilities for the
sizes of Jordan blocks are (2, 2, 1), (2, 1, 1, 1).

λ = 4: We have a 2× 2 block and this is the only Jordan block.

This gives a total of 6 different Jordan forms (up to permutation of the factors).
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