Selected Solutions to Homework 5

Tim Smits

February 19, 2021

6.5.15 Let U be a unitary operator on an inner product space V, and let W be a finite-dimensional U-invariant subspace of V. Prove that:

- (a) U(W) = W
- (b) W^{\perp} is U-invariant.

Solution:

- (a) Since W is U-invariant, $U|_W$ is a linear operator on W. If $x \in \ker(U|_W)$, then because $x \in V$ we have $||U|_W(x)|| = ||U(x)|| = ||x|| = 0$ as U is unitary. This says $U|_W$ is injective, and therefore surjective because W is finite dimensional.
- (b) Let $x \in W^{\perp}$. We wish to show that $\langle U(x), y \rangle = 0$ for any $y \in W$. Since U is unitary, we have $\langle x, y \rangle = \langle U(x), U(y) \rangle = 0$. By part a), U(W) = W so varying over all $y \in W$ means U(y) varies over all of W. This says U(x) is orthogonal to everything in W, so $U(x) \in W^{\perp}$ as desired.

6.5.31 Let H_u be a Householder operator on a finite-dimensional inner product space. Prove the following:

- (c) Prove that $H_u(u) = -u$.
- (d) Prove that $H_u^2 = I$ and $H_u^* = H_u$.

Solution:

- (c) By definition, we have $H_u(u) = u 2\langle u, u \rangle u = u 2u = -u$ because u is a unit vector.
- (d) By definition, we have $H_u(x) = x 2\langle x, u \rangle u$. Then $H_u^2(x) = H_u(x 2\langle x, u \rangle u) = H_u(x) 2\langle x, u \rangle H_u(u) = (x 2\langle x, u \rangle u) + 2\langle x, u \rangle u = x$, since $H_u(u) = -u$ by part c). This says $H_u^2(x) = x$, so $H_u^2 = I$ as desired.

Next, we wish to check that $\langle H_u(x), y \rangle = \langle x, H_u(y) \rangle$ for all $x, y \in V$. We have $\langle H_u(x), y \rangle = \langle x - 2\langle x, u \rangle u, y \rangle = \langle x, y \rangle - 2\langle x, u \rangle \langle u, y \rangle$. Similarly, we have $\langle x, H_u(y) \rangle = \langle x, y - 2\langle y, u \rangle u \rangle = \langle x, y \rangle + \langle x, -2\langle y, u \rangle u \rangle = \langle x, y \rangle - 2\langle y, u \rangle \langle x, u \rangle$. Since $\overline{\langle y, u \rangle} = \langle u, y \rangle$, we're done.

6.8.24 Let T be a linear operator on a real inner product space V, and define $H: V \times V \to R$ by $H(x, y) = \langle x, T(y) \rangle$ for all $x, y \in V$.

- (b) Prove that H is symmetric if and only if T is self-adjoint.
- (c) What properties must T have for H to be an inner product on V?

(d) Explain why H may fail to be a bilinear form if V is a complex inner product space.

Solution:

- (b) H(x,y) = H(y,x) if and only if $\langle x, T(y) \rangle = \langle y, T(x) \rangle$ for all $x, y \in V$. Since V is a real inner product space, this says $\langle T(x), y \rangle = \langle x, T(y) \rangle$ for all $x, y \in V$, which is precisely what it means for T to be self-adjoint.
- (c) An inner product must be bilinear, symmetric, and positive-definite: that it is, $\langle x, x \rangle > 0$ for $x \neq 0$. By part a), H is always bilinear, and by par b), H is symmetric if and only if T is self-adjoint. The positive definite condition says that T must be an operator with $\langle x, T(x) \rangle > 0$ for $x \neq 0$. So H defines an inner product if T is a self-adjoint operator with this property.

Note: A self-adjoint operator with this property is called *positive definite*. The point is that H inherits the properties of the operator T.

(d) H might fail to be a bilinear form over \mathbb{C} because $H(x, iy) = \langle x, T(iy) \rangle = \langle x, iT(y) \rangle = -i\langle x, T(y) \rangle = -iH(x, y)$. In general, we do not necessarily have that -iH(x, y) = iH(x, y). For example, take T to be the identity map. In this case, for non-zero x it's never true that $-i||x||^2 = i||x||^2$.

2. Let $H: V \times V \to F$ be a bilinear form on a finite-dimensional vector space V. Show that H is non-degenerate if and only if the only $w \in V$ such that H(v, w) = 0 for all $v \in V$ is w = 0.

Solution: Let L_H and R_H be the left and right functionals associated to H. Recall that H is non-degenerate if and only if R_H and L_H are both injective. Rephrased in this language, we wish to show that H is non-degenerate if and only if L_H is injective. The forward direction is free, so assume that L_H is injective. Then we wish to prove that R_H is also injective. In my discussion notes, I show that $(R_H)^*(\text{eval}_v) = L_H(v)$ for any $v \in V$. The same argument can be used to show that $R_H(v) = (L_H)^*(\text{eval}_v)$ for any $v \in V$. From HW 2, we know that $(L_H)^*$ is surjective because L_H is injective, which means that R_H is also surjective. Since V is finite dimensional, this means that R_H is injective as well, so we're done.

3. Consider the conic section $2x^2 - 72xy + 23y^2 - 140x + 20y - 75 = 0$ in \mathbb{R}^2 . Perform a change of variables from (x, y) to (x', y') given by a rigid motion that transforms to conic to the form $\lambda(x')^2 + \mu(y')^2 = h$ for some $\lambda, \mu, h \in \mathbb{R}$. Use this to graph the original conic.

Solution: The idea is to perform a rotation to kill off the xy-term and then a translation to kill off the linear terms. First, we must rewrite our equation into something that linear algebra is equipped to handle. Let $v \in \mathbb{R}^2$ and let $[v]_{\beta} = (x, y)$, where β is the standard basis of \mathbb{R}^2 . Rewriting the conic as a function of the vector v, we have the equation $[v]_{\beta}^t A[v]_{\beta} + B[v]_{\beta} = 75$, where $A = \begin{pmatrix} 2 & -36 \\ -36 & 23 \end{pmatrix}$ and $B = (-140 \quad 20)$. An orthonormal eigenbasis for the matrix A is given by $\gamma = \{(-3/5, 4/5), (4/5, 3/5)\}$ with associated eigenvalues 50 and -25 respectively. Letting S_{γ}^{β} denote the change of basis matrix from γ to β , we have $[v]_{\beta} = S_{\gamma}^{\beta}[v]_{\gamma}$ by definition. Substituting this in, we can rewrite our equation as $[v]_{\gamma}^t (S_{\gamma}^{\beta})^t A S_{\gamma}^{\beta}[v]_{\gamma} + B S_{\gamma}^{\beta}[v]_{\gamma} = 75$. By definition, we have $S_{\gamma}^{\beta} = \begin{pmatrix} -3/5 & 4/5 \\ 4/5 & 3/5 \end{pmatrix}$. If we set $[v]_{\gamma} = (a, b)$, then in these new coordinates our equation is $50a^2 - 25b^2 + 100a - 100b = 75$. Completing the square yields $50(a + 1)^2 - 10b^2$.

 $25(b+2)^2 = 25$, so our equation is $2(a+1)^2 - (b+2)^2 = 1$. Letting x' = a+1 and y' = b+2 gives the equation $2(x')^2 - (y')^2 = 1$ in (x', y')-coordinates.