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6.5.15 Let U be a unitary operator on an inner product space V , and let W be a finite-dimensional
U -invariant subspace of V . Prove that:

(a) U(W ) = W

(b) W⊥ is U -invariant.

Solution:

(a) Since W is U -invariant, U |W is a linear operator on W . If x ∈ ker(U |W ), then because
x ∈ V we have ‖U |W (x)‖ = ‖U(x)‖ = ‖x‖ = 0 as U is unitary. This says U |W is injective,
and therefore surjective because W is finite dimensional.

(b) Let x ∈ W⊥. We wish to show that 〈U(x), y〉 = 0 for any y ∈ W . Since U is unitary,
we have 〈x, y〉 = 〈U(x), U(y)〉 = 0. By part a), U(W ) = W so varying over all y ∈ W
means U(y) varies over all of W . This says U(x) is orthogonal to everything in W , so
U(x) ∈W⊥ as desired.

6.5.31 Let Hu be a Householder operator on a finite-dimensional inner product space. Prove the
following:

(c) Prove that Hu(u) = −u.

(d) Prove that H2
u = I and H∗u = Hu.

Solution:

(c) By definition, we have Hu(u) = u− 2〈u, u〉u = u− 2u = −u because u is a unit vector.

(d) By definition, we have Hu(x) = x − 2〈x, u〉u. Then H2
u(x) = Hu(x − 2〈x, u〉u) =

Hu(x) − 2〈x, u〉Hu(u) = (x − 2〈x, u〉u) + 2〈x, u〉u = x, since Hu(u) = −u by part c).
This says H2

u(x) = x, so H2
u = I as desired.

Next, we wish to check that 〈Hu(x), y〉 = 〈x,Hu(y)〉 for all x, y ∈ V . We have 〈Hu(x), y〉 =
〈x−2〈x, u〉u, y〉 = 〈x, y〉−2〈x, u〉〈u, y〉. Similarly, we have 〈x,Hu(y)〉 = 〈x, y−2〈y, u〉u〉 =
〈x, y〉+ 〈x,−2〈y, u〉u〉 = 〈x, y〉 − 2〈y, u〉〈x, u〉. Since 〈y, u〉 = 〈u, y〉, we’re done.

6.8.24 Let T be a linear operator on a real inner product space V , and define H : V × V → R by
H(x, y) = 〈x, T (y)〉 for all x, y ∈ V .

(b) Prove that H is symmetric if and only if T is self-adjoint.

(c) What properties must T have for H to be an inner product on V ?
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(d) Explain why H may fail to be a bilinear form if V is a complex inner product space.

Solution:

(b) H(x, y) = H(y, x) if and only if 〈x, T (y)〉 = 〈y, T (x)〉 for all x, y ∈ V . Since V is a real
inner product space, this says 〈T (x), y〉 = 〈x, T (y)〉 for all x, y ∈ V , which is precisely
what it means for T to be self-adjoint.

(c) An inner product must be bilinear, symmetric, and positive-definite: that it is, 〈x, x〉 > 0
for x 6= 0. By part a), H is always bilinear, and by par b), H is symmetric if and only
if T is self-adjoint. The positive definite condition says that T must be an operator with
〈x, T (x)〉 > 0 for x 6= 0. So H defines an inner product if T is a self-adjoint operator with
this property.

Note: A self-adjoint operator with this property is called positive definite. The point is
that H inherits the properties of the operator T .

(d) H might fail to be a bilinear form over C because H(x, iy) = 〈x, T (iy)〉 = 〈x, iT (y)〉 =
−i〈x, T (y)〉 = −iH(x, y). In general, we do not necessarily have that −iH(x, y) =
iH(x, y). For example, take T to be the identity map. In this case, for non-zero x
it’s never true that −i‖x‖2 = i‖x‖2.

2. Let H : V × V → F be a bilinear form on a finite-dimensional vector space V . Show that H is
non-degenerate if and only if the only w ∈ V such that H(v, w) = 0 for all v ∈ V is w = 0.

Solution: Let LH and RH be the left and right functionals associated to H. Recall that H is
non-degenerate if and only if RH and LH are both injective. Rephrased in this language, we
wish to show that H is non-degenerate if and only if LH is injective. The forward direction is
free, so assume that LH is injective. Then we wish to prove that RH is also injective. In my
discussion notes, I show that (RH)∗(evalv) = LH(v) for any v ∈ V . The same argument can
be used to show that RH(v) = (LH)∗(evalv) for any v ∈ V . From HW 2, we know that (LH)∗

is surjective because LH is injective, which means that RH is also surjective. Since V is finite
dimensional, this means that RH is injective as well, so we’re done.

3. Consider the conic section 2x2 − 72xy + 23y2 − 140x + 20y − 75 = 0 in R2. Perform a change
of variables from (x, y) to (x′, y′) given by a rigid motion that transforms to conic to the form
λ(x′)2 + µ(y′)2 = h for some λ, µ, h ∈ R. Use this to graph the original conic.

Solution: The idea is to perform a rotation to kill off the xy-term and then a translation to
kill off the linear terms. First, we must rewrite our equation into something that linear algebra
is equipped to handle. Let v ∈ R2 and let [v]β = (x, y), where β is the standard basis of R2.
Rewriting the conic as a function of the vector v, we have the equation [v]tβA[v]β +B[v]β = 75,

where A =

(
2 −36
−36 23

)
and B =

(
−140 20

)
. An orthonormal eigenbasis for the matrix A

is given by γ = {(−3/5, 4/5), (4/5, 3/5)} with associated eigenvalues 50 and −25 respectively.
Letting Sβγ denote the change of basis matrix from γ to β, we have [v]β = Sβγ [v]γ by definition.

Substituting this in, we can rewrite our equation as [v]tγ(Sβγ )tASβγ [v]γ + BSβγ [v]γ = 75. By

definition, we have Sβγ =

(
−3/5 4/5
4/5 3/5

)
. If we set [v]γ = (a, b), then in these new coordinates

our equation is 50a2 − 25b2 + 100a − 100b = 75. Completing the square yields 50(a + 1)2 −
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25(b+ 2)2 = 25, so our equation is 2(a+ 1)2 − (b+ 2)2 = 1. Letting x′ = a+ 1 and y′ = b+ 2
gives the equation 2(x′)2 − (y′)2 = 1 in (x′, y′)-coordinates.
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