Selected Solutions to Homework 4

Tim Smits

February 12, 2021

6.2.14 Let W_1 and W_2 be subspaces of a finite-dimensional inner product space. Prove that $(W_1 + W_2)^{\perp} = W_1^{\perp} \cap W_2^{\perp}$ and $(W_1 \cap W_2)^{\perp} = W_1^{\perp} + W_2^{\perp}$.

Solution: Suppose that $x \in (W_1 + W_2)^{\perp}$. Then x is orthogonal to every vector in $W_1 + W_2$. In particular, $W_1, W_2 \subset W_1 + W_2$, so x is orthogonal to both W_1 and W_2 , so $x \in W_1^{\perp} \cap W_2^{\perp}$. If $x \in W_1^{\perp} \cap W_2^{\perp}$, then x is orthogonal to every vector in both W_1 and W_2 , so it's orthogonal to any sum of such vectors, so that $x \in (W_1 + W_2)^{\perp}$. This shows that $(W_1 + W_2)^{\perp} = W_1^{\perp} \cap W_2^{\perp}$. Now, since V is finite dimensional, $(W^{\perp})^{\perp} = W$ for any subspace $W \subset V$. Replacing W_1 and W_2 with W_1^{\perp} and W_2^{\perp} in the above equality and taking an orthogonal complement then yields what we want.

6.3.12 Let V be an inner product space, and let T be a linear operator on V.

- (a) Prove that $\operatorname{im}(T^*)^{\perp} = \ker(T)$.
- (b) Prove that if V is finite dimensional, then $\operatorname{im}(T^*) = \ker(T)^{\perp}$.

Solution:

- (a) Suppose that $x \in \ker(T)$. Then $\langle T(x), v \rangle = 0$ for any $v \in V$. Pulling the adjoint through the inner product, we have $\langle x, T^*(v) \rangle = 0$ for any $v \in V$, so that $x \in \operatorname{im}(T^*)^{\perp}$. The other containment is obvious since all these steps are easily reversible.
- (b) Since V is finite dimensional, we have $(\operatorname{im}(T^*)^{\perp})^{\perp} = \operatorname{im}(T^*)$, which tells us that $\operatorname{im}(T^*) = \ker(T)^{\perp}$.

6.4.8 Let T be a normal operator on a finite-dimensional complex inner product space V, and let W be a subspace of W. Prove that if W is T-invariant, then W is also T^* -invariant.

Solution: Since T is normal, it's diagonalizable, and we know that $T|_W$ is both well defined because W is T-invariant, and also that $T|_W$ is diagonalizable from previous homework. Let $\beta = \{v_1, \ldots, v_k\}$ be a basis of W consisting of eigenvectors of $T|_W$. If v_i has eigenvalue λ_i , then because T is normal we know that it's an eigenvector for T^* of eigenvalue $\overline{\lambda_i}$. Thus, $T^*(\beta) \subset W$ so that W is T^* -invariant as desired.

6.4.14 Let V be a finite dimensional real inner product space, and let U, T be self-adjoint linear operators on V with UT = TU. Prove that there is an orthonormal basis of V consisting of eigenvectors of both U and T.

Solution: Since U, T are self-adjoint operators, they're diagonalizable. Let E_{λ} be an eigenspace of T. On the previous homework, we showed that we can find a basis β_{λ} for E_{λ} consisting of eigenvectors for both U and T. Running Gram-Schmidt on this eigenbasis turns it into an *orthonormal* eigenbasis β'_{λ} , because the process of Gram-Schmidt just replaces the basis vectors with specific linear combinations of said basis vectors, and linear combinations of eigenvectors clearly remain eigenvectors. Let $\lambda_1, \ldots, \lambda_k$ be the distinct eigenvalues of T. The eigenspaces E_{λ_i} are all orthogonal to each other because T and U are self-adjoint (so in particular, they're normal). Then as before, taking the union $\beta' = \beta'_{\lambda_1} \cup \ldots \cup \beta'_{\lambda_k}$ then provides an orthonormal basis for $E_{\lambda_1} \oplus \ldots \oplus E_{\lambda_k} = V$ of eigenvectors for both U and T.

- **2.** Let T be a self-adjoint operator on a finite-dimensional inner product space.
 - (a) Show that $||T(v) \pm iv||^2 = ||T(v)||^2 + ||v||^2$.
 - (b) Show that $T \pm i$ is invertible.

Solution:

- (a) By definition, we have $||T(v) \pm iv||^2 = \langle T(v) \pm iv, T(v) \pm iv \rangle = \langle T(v), T(v) \rangle \pm \langle T(v), iv \rangle \pm \langle iv, T(v) \rangle + \langle iv, iv \rangle$. The middle two terms cancel by anti-linearity of the inner product and the self-adjointness of T. As $\langle iv, iv \rangle = i(-i)\langle v, v \rangle$, we're just left with $\langle T(v), T(v) \rangle + \langle v, v \rangle = ||T(v)||^2 + ||v||^2$.
- (b) Suppose that $x \in \ker(T \pm i)$. Then part a) says that $||(T \pm i)(x)||^2 = ||T(x)||^2 + ||x||^2 = 0$, which in particular, forces $||x||^2 = 0$. This says x = 0, so $T \pm i$ is injective. Since it's a linear operator on a finite dimensional vector space, it's therefore an isomorphism, so invertible.