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6.2.14 Let W1 and W2 be subspaces of a finite-dimensional inner product space. Prove that
(W1 +W2)⊥ = W⊥1 ∩W⊥2 and (W1 ∩W2)⊥ = W⊥1 +W⊥2 .

Solution: Suppose that x ∈ (W1 +W2)⊥. Then x is orthogonal to every vector in W1 +W2.
In particular, W1,W2 ⊂W1 +W2, so x is orthogonal to both W1 and W2, so x ∈W⊥1 ∩W⊥2 . If
x ∈W⊥1 ∩W⊥2 , then x is orthogonal to every vector in both W1 and W2, so it’s orthogonal to
any sum of such vectors, so that x ∈ (W1 +W2)⊥. This shows that (W1 +W2)⊥ = W⊥1 ∩W⊥2 .
Now, since V is finite dimensional, (W⊥)⊥ = W for any subspace W ⊂ V . Replacing W1 and
W2 with W⊥1 and W⊥2 in the above equality and taking an orthogonal complement then yields
what we want.

6.3.12 Let V be an inner product space, and let T be a linear operator on V .

(a) Prove that im(T ∗)⊥ = ker(T ).

(b) Prove that if V is finite dimensional, then im(T ∗) = ker(T )⊥.

Solution:

(a) Suppose that x ∈ ker(T ). Then 〈T (x), v〉 = 0 for any v ∈ V . Pulling the adjoint through
the inner product, we have 〈x, T ∗(v)〉 = 0 for any v ∈ V , so that x ∈ im(T ∗)⊥. The other
containment is obvious since all these steps are easily reversible.

(b) Since V is finite dimensional, we have (im(T ∗)⊥)⊥ = im(T ∗), which tells us that im(T ∗) =
ker(T )⊥.

6.4.8 Let T be a normal operator on a finite-dimensional complex inner product space V , and let
W be a subspace of W . Prove that if W is T -invariant, then W is also T ∗-invariant.

Solution: Since T is normal, it’s diagonalizable, and we know that T |W is both well defined
because W is T -invariant, and also that T |W is diagonalizable from previous homework. Let
β = {v1, . . . , vk} be a basis of W consisting of eigenvectors of T |W . If vi has eigenvalue λi, then
because T is normal we know that it’s an eigenvector for T ∗ of eigenvalue λi. Thus, T ∗(β) ⊂W
so that W is T ∗-invariant as desired.

6.4.14 Let V be a finite dimensional real inner product space, and let U, T be self-adjoint linear
operators on V with UT = TU . Prove that there is an orthonormal basis of V consisting of
eigenvectors of both U and T .
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Solution: Since U, T are self-adjoint operators, they’re diagonalizable. Let Eλ be an eigenspace
of T . On the previous homework, we showed that we can find a basis βλ for Eλ consisting
of eigenvectors for both U and T . Running Gram-Schmidt on this eigenbasis turns it into an
orthonormal eigenbasis β′λ, because the process of Gram-Schmidt just replaces the basis vectors
with specific linear combinations of said basis vectors, and linear combinations of eigenvectors
clearly remain eigenvectors. Let λ1, . . . , λk be the distinct eigenvalues of T . The eigenspaces
Eλi are all orthogonal to each other because T and U are self-adjoint (so in particular, they’re
normal). Then as before, taking the union β′ = β′λ1

∪ . . . ∪ β′λk
then provides an orthonormal

basis for Eλ1 ⊕ . . .⊕ Eλk
= V of eigenvectors for both U and T .

2. Let T be a self-adjoint operator on a finite-dimensional inner product space.

(a) Show that ‖T (v)± iv‖2 = ‖T (v)‖2 + ‖v‖2.

(b) Show that T ± i is invertible.

Solution:

(a) By definition, we have ‖T (v)± iv‖2 = 〈T (v)± iv, T (v)± iv〉 = 〈T (v), T (v)〉± 〈T (v), iv〉±
〈iv, T (v)〉 + 〈iv, iv〉. The middle two terms cancel by anti-linearity of the inner product
and the self-adjointness of T . As 〈iv, iv〉 = i(−i)〈v, v〉, we’re just left with 〈T (v), T (v)〉+
〈v, v〉 = ‖T (v)‖2 + ‖v‖2.

(b) Suppose that x ∈ ker(T ± i). Then part a) says that ‖(T ± i)(x)‖2 = ‖T (x)‖2 +‖x‖2 = 0,
which in particular, forces ‖x‖2 = 0. This says x = 0, so T ± i is injective. Since it’s
a linear operator on a finite dimensional vector space, it’s therefore an isomorphism, so
invertible.
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