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5.4.6 For each linear operator T on the vector space V , find an ordered basis for the T -cyclic
subspace generated by the vector z.

(a) V = R4, T (a, b, c, d) = (a+ b, b− c, a+ c, a+ d), z = e1.

(d) V = M2(R), T (A) =

(
1 1
2 2

)
A, z =

(
0 1
1 0

)

Solution:

(a) The T -cyclic subspace spanned by z is by definition W = Span{z, T (z), T 2(z), . . .}. We
have T (z) = (1, 0, 1, 1), T 2(z) = (1,−1, 2, 2), and T 3(z) = (0,−3, 3, 3). Notice that
T 3(z) = (3T 2 − 3T )(z), so that T i(z) ∈ Span{T (z), T 2(z)} for i ≥ 3. This says W =
Span{z, T (z), T 2(z)}. Since T (z) and T 2(z) are not multiples of each other, {T (z), T 2(z)}
is linearly independent and by inspection we see that e1 6∈ Span{T (z), T 2(z)}, so that
{z, T (z), T 2(z)} is a basis for W .

(d) The T -cyclic subspace spanned by z is by definition W = Span{z, T (z), T 2(z), . . .}. Note
that T 2(z) = 3T (z), so W = Span{z, T (z)}. It’s clear that z and T (z) are not multiples
of each other, so {z, T (z)} is a basis of W .

5.4.20) Let T be a linear operator on a vector space V , and suppose that V is a T -cyclic subspace
of itself. Prove that if U is a linear operator on V , then UT = TU if and only if U = g(T ) for some
g(t) ∈ F [t].

Solution: Since V is T -cyclic, we have a basis given by β = {v, T (v), . . . , } for some v. For
any v ∈ V , we have U(v) ∈ V so we can write U(v) = c1v + c2T (v) + . . . + cnT

n−1(v) =
(c1idV + . . . + cnT

n−1)(v) for some c1, . . . , cn ∈ F and some n, so U(v) = g(T )(v) where
g(x) = c1 + . . .+ cnx

n−1.

Suppose that UT = TU . Then it’s a simple induction argument to see that for any i ≥ 0, we
have UT i = T iU , and so U(T i(v)) = T i(U(v)) = T i(g(T )(v)) = g(T )(T i(v)) (because powers
of T commute), so that U = g(T ) because they agree on a basis. Conversely, let U = g(T )
for some g(x) ∈ F [x]. For any i ≥ 0, We have (UT )(T i(v)) = U(T i+1(v)) = g(T )(T i+1(v)) =
T (g(T )(T i(v)) = T (U(T i(v))) = (TU)(T i(v)). This says UT and TU agree on a basis, so
UT = TU as desired.

5.2.19(a) Show that if T and U are simultaneously diagonalizable operators, then T and U com-
mute.
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Solution: Let β = {v1, . . . , vn} be a simultaneous eigenbasis for U and T . For each vi, let λi
be the associated eigenvalue for T , and γi the associated eigenvalue for U . We have (UT )(vi) =
U(T (vi)) = U(λivi) = λi(U(vi)) = λiγivi, and (TU)(vi) = T (γivi) = γiT (vi) = γiλivi. Since
UT and TU agree on a basis, they’re equal as operators.

5.4.25(a) Prove the converse to 5.2.19(a): if T and U are diagonalizable linear operators on a finite
dimensional vector space V with UT = TU , then T and U are simultaneously diagonalizable.

Solution: Suppose that UT = TU . Let λ be an eigenvalue of T , with associated eigenspace
Eλ. I claim that Eλ is U -invariant: indeed, for v ∈ Eλ, we have T (U(v)) = (TU)(v) =
(UT )(v) = U(T (v)) = U(λv) = λU(v). This says that U(v) is an eigenvector of T , so that
U(v) ∈ Eλ, i.e. Eλ is U -invariant. Then U |Eλ is a well defined linear operator, and by 5.4.24,
we know that U |Eλ is diagonalizable. Therefore, we can find a basis βλ ⊂ Eλ of eigenvectors
for U |Eλ . Since the vectors in βλ still live in Eλ, in particular, they’re still eigenvectors of T , so
βλ is a basis of Eλ consisting of eigenvectors for both T and U |Eλ . As T is diagonalizable, we
have V = Eλ1

⊕ . . .⊕Eλk where λ1, . . . , λk are the eigenvalues of T , and what we know about
direct sums says that β = βλ1

∪ . . . ∪ βλk is a basis for V . If v ∈ βλi , then U(v) = U |Eλi (v),
so this says that v is an eigenvector for U as well. Therefore, β is a basis of V consisting of
eigenvectors for both U and T , so we’re done.

2 Let V be a finite dimensional F -vector space, and let T : V → V be a linear operator with
T 3 = T .

(a) Show that if F = R, then T is diagonalizable.

(b) Give an example to show that if F = F2, then T need not be diagonalizable.

Solution:

(a) Let m(x) be the minimal polynomial of T . Since T 3 = T , this says x3−x kills T , so that
m(x) | x3 − x. Since x3 − x = x(x − 1)(x + 1) is a product of distinct linear factors in
R[x], this says that m(x) must also split, so that T is diagonalizable.

(b) The companion matrix Cp for p(x) = x3 + x ∈ F2[x] over F2 is given by

0 0 0
1 0 1
0 1 0

,

and from discussion we know that Cp has characteristic polynomial x3 + x. Therefore,
the linear operator T : v → Cpv on F3

2 satisfies the polynomial equation T 3 = T by the
Cayley-Hamilton theorem. Since Cp has rank 2, we have dim(E0) = dim(ker(Cp)) = 1,
while dim(E1) = dim(ker(Cp − I3)) = 1 as well. This says we can’t find an eigenbasis for
T , so that T is not diagonalizable.
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