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2.6.12 Let V be a finite dimensional vector space with ordered basis 8. Prove that ¢(8) = 5**
where ¢ : V' — V** is the map ¥ (v) = ev,,.

Solution: Let 8 = {vy,...,v,}. Then the dual basis to 8 is given by {f1,..., fn} where
fi(vj) = 11if ¢ = j and 0 otherwise. The dual basis f** to 8* is given by {d1,...,0,} where
0;(f;) = 1if i« = j and 0 otherwise. For any v;, we have ¢(v;) = ev,,, and I claim that
¥(v;) = ;. To do so, it’s sufficient to check that both sides agree on the basis 8*. We have
(i) (f;) = eve, (fj) = fj(vi) = 1 if i = j and 0 otherwise. This is precisely the definition of
di, so we’re done.

5.1.18 Let T': M,,(R) — M, (R) be defined by T'(A) = A’.
(a) Show that £1 are the only eigenvalues of T'.
(b) Describe the eigenvectors corresponding to each eigenvalue of T

(d) Find an ordered basis 8 of M, (R) for n > 2 such that [T is diagonal.

Solution:

(a) Let A = (ai;). If X is an eigenvalue of T, then A* = MA. The ij-th entry of A® is aj;, so
we have aj; = Aa;;. Similarly, the ji-th entry of At is aij, SO a;; = Aaj;. This says that
a;; = )\Qaij, so that A2 =1 yields A = %1 as desired.

(b) An eigenvector of eigenvalue 1 is a matrix A with A = A?, i.e. a symmetric matrix. An
eigenvector of eigenvalue 1 is a matrix A with A = —A?, i.e. a skew-symmetric matrix.

(d) I claim that M, (R) = Sym,,(R) & Skew,,(R). If 3 is a basis of Sym, (R) and + is a basis
of Skew,,(R), then we know that S U~ is a basis of Sym,,(R) & Skew, (R). Since each
vector in U~y is an eigenvector of T', we will then have that [T]gu, is diagonal.

Any matrix A in M, (R) can be written as A = £(A+ A") + (A — A"). Since the trans-
pose map is a linear involution, we see that the first matrix is symmetric while the second
is skew symmetric, so M,(R) = Sym, (R) + Skew,(R). If A € Sym,(R) N Skew, (R),
then A = A" and A = —A', so 2A" = 0 says A = A® = 0. Therefore, M,(R) =
Sym,, (R) @& Skew, (R). It remains to give an explicit description of the bases § and +.

I claim that 8 = {E;; + Ej; :1 <1< j<n}={F;;} is a basis for Sym, (R), where E;;
is the matrix with ¢j-th entry 1 and 0 everywhere else. Because none of these matrices
share any non-zero entries in common, they must be linearly independent. If A = (a;;) is
a symmetric matrix, then a;; = a;;, so we need only specify the entries on or below the
diagonal of A. It’s then quite clear that A = Z?Zl %a“Fii + qu a;; F;; so it’s a basis.




Similarly, one can show that v = {E;; — E;; : 1 < i < j < n} is a basis for Skew,(R).
Therefore, [T]gu, is diagonal with @ 1’s and @ —1’s along the diagonal.

2. Let V be an infinite dimensional vector space with basis B = {v; : i € I'} for some indexing set I.
Let f; be the dual vector to v;, i.e. f;(v;) =11if ¢ = j and 0 otherwise. Show that B* = {f; :i € I}
does not span V*.

Solution: Let f € Span(B*), so that f = ¢1f;, +...+ckfi, for some iy, ... ip € I and ¢; € F.
Then the definition of the f; means that f can only take on finitely many non-zero values on
B, namely f(vj) = ¢; for j € {i1,...,ix} and is 0 otherwise. As we’ve seen, any map of sets
f : B — F extends to a functional Ty : V' — F. Consider the map f : B — I defined by
f(v;) =1 for all ¢ € I. Then the functional T satisfies Ty (v;) = f(v;) =1 for all ¢ € I, so the
above discussion shows that T ¢ Span(B*).

4. Let C* be the R-vector space of smooth functions f : R — R. Consider the linear operator
2
T= dd? : C°° — C°. For each eigenvalue of T, find two linearly independent eigenvectors.

Solution: Let A\ be an eigenvalue of T'. We consider the three cases A =0, A > 0, and A < 0.

A =0: In this case, we are looking for functions f such that f” = 0. Integrating twice says
f(z) = c1 + cox for some c1,co € R. Then clearly {1,z} will be a linearly independent
set of eigenvectors: if ¢; 4+ cox = 0, then plugging in x = 0 says ¢; = 0, so that c; = 0.
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. We seek functions f such that f” = Af. Note that f = ¢Y>® and e~V>® both work,

ﬁ‘"”, e‘ﬁm} is linearly independent. Suppose that cleﬁ‘r +

so we just need to show {e
cze_\[\“' = 0 for some c1,co € R. Plugging in z = 0 says ¢; + ¢c; = 0 and differentiating
and plugging in = = 0 says ¢1 VA — cav/A = 0. Since A # 0, dividing the second equation
by V/\ easily shows us that ¢; = ¢o = 0.

A < 0: Set A = —a, so we seek functions f such that f”/ = —af. Note that f = sin(y/az) and
f = cos(y/azx) both work, so we just need to show that {sin(y/ax), cos(y/azx)} are linearly
independent. Suppose that ¢ sin(y/ax) + ¢; cos(y/az) = 0 for some ¢, ¢y € R. Plugging
in x = 0 gives co = 0 and plugging in = = ﬁ gives ¢c; = 0, so we’re done.
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