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2.6.12 Let V be a finite dimensional vector space with ordered basis β. Prove that ψ(β) = β∗∗

where ψ : V → V ∗∗ is the map ψ(v) = evv.

Solution: Let β = {v1, . . . , vn}. Then the dual basis to β is given by {f1, . . . , fn} where
fi(vj) = 1 if i = j and 0 otherwise. The dual basis β∗∗ to β∗ is given by {δ1, . . . , δn} where
δi(fj) = 1 if i = j and 0 otherwise. For any vi, we have ψ(vi) = evvi , and I claim that
ψ(vi) = δi. To do so, it’s sufficient to check that both sides agree on the basis β∗. We have
ψ(vi)(fj) = evvi(fj) = fj(vi) = 1 if i = j and 0 otherwise. This is precisely the definition of
δi, so we’re done.

5.1.18 Let T : Mn(R)→Mn(R) be defined by T (A) = At.

(a) Show that ±1 are the only eigenvalues of T .

(b) Describe the eigenvectors corresponding to each eigenvalue of T .

(d) Find an ordered basis β of Mn(R) for n > 2 such that [T ]β is diagonal.

Solution:

(a) Let A = (aij). If λ is an eigenvalue of T , then At = λA. The ij-th entry of At is aji, so
we have aji = λaij . Similarly, the ji-th entry of At is aij , so aij = λaji. This says that
aij = λ2aij , so that λ2 = 1 yields λ = ±1 as desired.

(b) An eigenvector of eigenvalue 1 is a matrix A with A = At, i.e. a symmetric matrix. An
eigenvector of eigenvalue 1 is a matrix A with A = −At, i.e. a skew-symmetric matrix.

(d) I claim that Mn(R) = Symn(R)⊕ Skewn(R). If β is a basis of Symn(R) and γ is a basis
of Skewn(R), then we know that β ∪ γ is a basis of Symn(R) ⊕ Skewn(R). Since each
vector in β ∪ γ is an eigenvector of T , we will then have that [T ]β∪γ is diagonal.

Any matrix A in Mn(R) can be written as A = 1
2 (A+At) + 1

2 (A−At). Since the trans-
pose map is a linear involution, we see that the first matrix is symmetric while the second
is skew symmetric, so Mn(R) = Symn(R) + Skewn(R). If A ∈ Symn(R) ∩ Skewn(R),
then A = At and A = −At, so 2At = 0 says A = At = 0. Therefore, Mn(R) =
Symn(R)⊕ Skewn(R). It remains to give an explicit description of the bases β and γ.

I claim that β = {Eij + Eji : 1 ≤ i ≤ j ≤ n} = {Fij} is a basis for Symn(R), where Eij
is the matrix with ij-th entry 1 and 0 everywhere else. Because none of these matrices
share any non-zero entries in common, they must be linearly independent. If A = (aij) is
a symmetric matrix, then aij = aji, so we need only specify the entries on or below the
diagonal of A. It’s then quite clear that A =

∑n
i=1

1
2aiiFii +

∑
j<i aijFij so it’s a basis.
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Similarly, one can show that γ = {Eij − Eji : 1 ≤ i < j ≤ n} is a basis for Skewn(R).

Therefore, [T ]β∪γ is diagonal with n(n+1)
2 1’s and n(n−1)

2 −1’s along the diagonal.

2. Let V be an infinite dimensional vector space with basis B = {vi : i ∈ I} for some indexing set I.
Let fi be the dual vector to vi, i.e. fi(vj) = 1 if i = j and 0 otherwise. Show that B∗ = {fi : i ∈ I}
does not span V ∗.

Solution: Let f ∈ Span(B∗), so that f = c1fi1 + . . .+ckfik for some i1, . . . , ik ∈ I and ci ∈ F .
Then the definition of the fi means that f can only take on finitely many non-zero values on
B, namely f(vj) = cj for j ∈ {i1, . . . , ik} and is 0 otherwise. As we’ve seen, any map of sets
f : B → F extends to a functional Tf : V → F . Consider the map f : B → F defined by
f(vi) = 1 for all i ∈ I. Then the functional Tf satisfies Tf (vi) = f(vi) = 1 for all i ∈ I, so the
above discussion shows that Tf 6∈ Span(B∗).

4. Let C∞ be the R-vector space of smooth functions f : R → R. Consider the linear operator

T = d2

dx2 : C∞ → C∞. For each eigenvalue of T , find two linearly independent eigenvectors.

Solution: Let λ be an eigenvalue of T . We consider the three cases λ = 0, λ > 0, and λ < 0.

λ = 0: In this case, we are looking for functions f such that f ′′ = 0. Integrating twice says
f(x) = c1 + c2x for some c1, c2 ∈ R. Then clearly {1, x} will be a linearly independent
set of eigenvectors: if c1 + c2x = 0, then plugging in x = 0 says c1 = 0, so that c2 = 0.

λ > 0: We seek functions f such that f ′′ = λf . Note that f = e
√
λx and e−

√
λx both work,

so we just need to show {e
√
λx, e−

√
λx} is linearly independent. Suppose that c1e

√
λx +

c2e
−
√
λx = 0 for some c1, c2 ∈ R. Plugging in x = 0 says c1 + c2 = 0 and differentiating

and plugging in x = 0 says c1
√
λ− c2

√
λ = 0. Since λ 6= 0, dividing the second equation

by
√
λ easily shows us that c1 = c2 = 0.

λ < 0: Set λ = −α, so we seek functions f such that f ′′ = −αf . Note that f = sin(
√
αx) and

f = cos(
√
αx) both work, so we just need to show that {sin(

√
αx), cos(

√
αx)} are linearly

independent. Suppose that c1 sin(
√
αx) + c2 cos(

√
αx) = 0 for some c1, c2 ∈ R. Plugging

in x = 0 gives c2 = 0 and plugging in x = π
2
√
α

gives c1 = 0, so we’re done.
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