Selected Solutions to Homework 1

Tim Smits

January 15, 2021

2. Let $V = \mathbb{F}_2^n$, viewed as an \mathbb{F}_2 vector space.

- (a) Show that V has $2^n 1$ different one-dimensional subspaces.
- (b) Find the number of 2-dimensional subspaces of V.

Solution:

- (a) By definition, any one-dimensional subspace looks like $W = \text{Span}\{v\}$ for some non-zero $v \in V$. Explicitly, we have $\text{Span}\{v\} = \{0, v\}$ because we are working over \mathbb{F}_2 , so there are only two scalars to multiply by. Therefore, we see that distinct non-zero vectors correspond to distinct one-dimensional subspaces. Since there are $2^n 1$ non-zero vectors in V, we get $2^n 1$ one-dimensional subspaces.
- (b) By definition, any 2-dimensional subspace looks like $W = \text{Span}\{v_1, v_2\}$ for v_1, v_2 linearly independent vectors in V. Saying $\{v_1, v_2\}$ is linearly independent is the same as saying that v_2 is not an \mathbb{F}_2 -multiple of v_1 , i.e. $v_2 \neq v_1$ because the only scalars in \mathbb{F}_2 are 0 and 1. Therefore, any two choices of distinct non-zero vectors gives a linearly independent subset, for a total of $\binom{2^n-1}{2}$ possible linearly independent subsets of two elements. For each subspace $W = \text{Span}\{v_1, v_2\}$ there are $\binom{3}{2}$ different possible bases for W. This is because we have $W = \{0, v_1, v_2, v_1 + v_2\}$, and a choice of any two distinct elements among the three non-zero vectors produces a linearly independent subset of two elements, i.e. a basis of W. This gives a total of $\frac{\binom{2^n-1}{2}}{\binom{3}{2}}$ different 2-dimensional subspaces.
- **3.** View \mathbb{R} as a \mathbb{Q} -vector space. Prove that \mathbb{R} has an uncountable basis.

Solution: Suppose that \mathbb{R} was a finite dimensional \mathbb{Q} -vector space. Then we would have $\mathbb{R} \cong \mathbb{Q}^n$ for some $n \ge 1$. Since \mathbb{Q} is countable, \mathbb{Q}^n is countable because it's a finite product of countable sets, and because \mathbb{R} is uncountable this leads to a contradiction. Therefore, \mathbb{R} is infinite dimensional. Suppose that $\beta = \{v_i\}_{i \in \mathbb{N}}$ is a countable basis for \mathbb{R} as a \mathbb{Q} -vector space. Since every element of \mathbb{R} is a *finite* \mathbb{Q} -linear combination of elements of β , we see that $\mathbb{R} = \bigcup_{n=1}^{\infty} \operatorname{Span}\{v_1, v_2, \ldots, v_n\}$. As $\operatorname{Span}\{v_1, \ldots, v_n\} \cong \mathbb{Q}^n$ as \mathbb{Q} -vector spaces (they're both *n*-dimensional), the right hand side is a countable union of countable sets, and therefore countable, which gives a contradiction. Thus, \mathbb{R} has uncountable dimension over \mathbb{Q} .

- 7. Let V be a finite dimensional F-vector space, and let $T: V \to V$ be a linear transformation.
 - (a) Show that there exists $k \ge 1$ such that $\ker(T^k) = \ker(T^m)$ for all $m \ge k$.
- (b) Use part (a) to show that there exists $k \ge 1$ such that $\ker(T^k) \cap \operatorname{im}(T^k) = 0$.

Solution:

- (a) Note that for any $k \ge 0$ we have $\ker(T^k) \subset \ker(T^{k+1})$, because if $T^k(x) = 0$ for some $x \in V$, we have $T^{k+1}(x) = T(T^k(x)) = T(0) = 0$. Now suppose to the contrary, that for all $k \ge 1$, there exists an integer $m \ge k$ such that $\ker(T^k) \ne \ker(T^m)$, i.e. we have a strict containment $\ker(T^k) \subset \ker(T^m)$. Let m_1 be such a choice of m for k = 1, and define m_i for $i \ge 2$ by such a choice of m for $k = m_{i-1}$. Then we are able to construct a strictly increasing sequence of subspaces $0 \subset \ker(T) \subset \ker(T^{m_1}) \subset \ker(T^{m_2}) \subset \ldots$. Since the containment at each stage is strict, we must have dim $\ker(T^{m_i}) > \dim \ker(T^{m_{i-1}})$, and since V is finite dimensional, there must eventually be some stage j where dim $\ker(T^{m_j}) = \dim(V)$, i.e. $\ker(T^{m_j}) = V$, so that $T^{m_j} = 0$. However, we then have for $m \ge m_j$, that $T^m = T^{m_j} = 0$, contradicting our assumption. This proves what we want to show.
- (b) Let k be as in part (a), and let $x \in \ker(T^k) \cap \operatorname{im}(T^k)$. Then $T^k(x) = 0$ and $x = T^k(y)$ for some $y \in V$. Applying T^k to both sides says $0 = T^k(x) = T^{2k}(y)$, so that $y \in \ker(T^{2k})$. Since $\ker(T^k) = \ker(T^{2k})$ by assumption, this says x = 0 as desired.

8. Let $T : \mathbb{F}_2^3 \to \mathbb{F}_2^3$ denote the linear transformation that is represented by the matrix $[T]_\beta = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$, with respect to $\beta = \{(0, 1, 1), (1, 1, 0), (0, 0, 1)\} = \{v_1, v_2, v_3\}$. Find $[T]_\gamma$, where $\gamma = \{e_1, e_2, e_3\}$ is the standard basis of \mathbb{F}_2^3 .

Solution: By definition, we have $[T]_{\gamma} = \begin{bmatrix} [T(e_1)]_{\gamma} & [T(e_2)]_{\gamma} & [T(e_3)]_{\gamma} \\ [T(e_1)]_{\gamma} & [T(e_2)]_{\gamma} & [T(e_3)]_{\gamma} \end{bmatrix}$, where $[T(e_i)]_{\gamma}$ denotes the γ -coordinates of $T(e_i)$. By inspection, we have $e_1 = v_1 + v_2 + v_3$, $e_2 = v_1 + v_3$, and $e_3 = v_3$. Therefore, $[T(e_1)]_{\beta} = [T]_{\beta}[e_1]_{\beta} = (0, 1, 1)$, $[T(e_2)]_{\beta} = [T]_{\beta}[e_2]_{\beta} = (1, 0, 0)$ and $[T(e_3)]_{\beta} = [T]_{\beta}[e_3]_{\beta} = (0, 0, 1)$. Changing to γ -coordinates, we have $[T(e_1)]_{\gamma} = v_2 + v_3 = (1, 1, 1), [T(e_2)]_{\gamma} = v_1 = (0, 1, 1)$ and $[T(e_3)]_{\gamma} = (0, 0, 1)$, so that $[T]_{\gamma} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$.