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2. Let V = Fn2 , viewed as an F2 vector space.

(a) Show that V has 2n − 1 different one-dimensional subspaces.

(b) Find the number of 2-dimensional subspaces of V .

Solution:

(a) By definition, any one-dimensional subspace looks like W = Span{v} for some non-zero
v ∈ V . Explicitly, we have Span{v} = {0, v} because we are working over F2, so there
are only two scalars to multiply by. Therefore, we see that distinct non-zero vectors
correspond to distinct one-dimensional subspaces. Since there are 2n−1 non-zero vectors
in V , we get 2n − 1 one-dimensional subspaces.

(b) By definition, any 2-dimensional subspace looks like W = Span{v1, v2} for v1, v2 linearly
independent vectors in V . Saying {v1, v2} is linearly independent is the same as saying
that v2 is not an F2-multiple of v1, i.e. v2 6= v1 because the only scalars in F2 are 0 and
1. Therefore, any two choices of distinct non-zero vectors gives a linearly independent
subset, for a total of

(
2n−1

2

)
possible linearly independent subsets of two elements. For

each subspace W = Span{v1, v2} there are
(
3
2

)
different possible bases for W . This

is because we have W = {0, v1, v2, v1 + v2}, and a choice of any two distinct elements
among the three non-zero vectors produces a linearly independent subset of two elements,

i.e. a basis of W . This gives a total of
(2n−1

2 )
(3
2)

different 2-dimensional subspaces.

3. View R as a Q-vector space. Prove that R has an uncountable basis.

Solution: Suppose that R was a finite dimensional Q-vector space. Then we would have
R ∼= Qn for some n ≥ 1. Since Q is countable, Qn is countable because it’s a finite product
of countable sets, and because R is uncountable this leads to a contradiction. Therefore, R
is infinite dimensional. Suppose that β = {vi}i∈N is a countable basis for R as a Q-vector
space. Since every element of R is a finite Q-linear combination of elements of β, we see
that R =

⋃∞
n=1 Span{v1, v2, . . . , vn}. As Span{v1, . . . , vn} ∼= Qn as Q-vector spaces (they’re

both n-dimensional), the right hand side is a countable union of countable sets, and therefore
countable, which gives a contradiction. Thus, R has uncountable dimension over Q.

7. Let V be a finite dimensional F -vector space, and let T : V → V be a linear transformation.

(a) Show that there exists k ≥ 1 such that ker(T k) = ker(Tm) for all m ≥ k.

(b) Use part (a) to show that there exists k ≥ 1 such that ker(T k) ∩ im(T k) = 0.

1



Solution:

(a) Note that for any k ≥ 0 we have ker(T k) ⊂ ker(T k+1), because if T k(x) = 0 for some
x ∈ V , we have T k+1(x) = T (T k(x)) = T (0) = 0. Now suppose to the contrary, that for
all k ≥ 1, there exists an integer m ≥ k such that ker(T k) 6= ker(Tm), i.e. we have a strict
containment ker(T k) ⊂ ker(Tm). Let m1 be such a choice of m for k = 1, and define mi

for i ≥ 2 by such a choice of m for k = mi−1. Then we are able to construct a strictly
increasing sequence of subspaces 0 ⊂ ker(T ) ⊂ ker(Tm1) ⊂ ker(Tm2) ⊂ . . .. Since the
containment at each stage is strict, we must have dim ker(Tmi) > dim ker(Tmi−1), and
since V is finite dimensional, there must eventually be some stage j where dim ker(Tmj ) =
dim(V ), i.e. ker(Tmj ) = V , so that Tmj = 0. However, we then have for m ≥ mj , that
Tm = Tmj = 0, contradicting our assumption. This proves what we want to show.

(b) Let k be as in part (a), and let x ∈ ker(T k)∩ im(T k). Then T k(x) = 0 and x = T k(y) for
some y ∈ V . Applying T k to both sides says 0 = T k(x) = T 2k(y), so that y ∈ ker(T 2k).
Since ker(T k) = ker(T 2k) by assumption, this says x = 0 as desired.

8. Let T : F3
2 → F3

2 denote the linear transformation that is represented by the matrix [T ]β =1 1 0
0 1 0
1 1 1

, with respect to β = {(0, 1, 1), (1, 1, 0), (0, 0, 1)} = {v1, v2, v3}. Find [T ]γ , where γ =

{e1, e2, e3} is the standard basis of F3
2.

Solution: By definition, we have [T ]γ =

 p p p
[T (e1)]γ [T (e2)]γ [T (e3)]γ

p p p

, where [T (ei)]γ de-

notes the γ-coordinates of T (ei). By inspection, we have e1 = v1 + v2 + v3, e2 = v1 + v3,
and e3 = v3. Therefore, [T (e1)]β = [T ]β [e1]β = (0, 1, 1), [T (e2)]β = [T ]β [e2]β = (1, 0, 0) and
[T (e3)]β = [T ]β [e3]β = (0, 0, 1). Changing to γ-coordinates, we have [T (e1)]γ = v2 + v3 =

(1, 1, 1), [T (e2)]γ = v1 = (0, 1, 1) and [T (e3)]γ = (0, 0, 1), so that [T ]γ =

1 0 0
1 1 0
1 1 1

.
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