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2. Let V =%, viewed as an Fy vector space.
(a) Show that V has 2™ — 1 different one-dimensional subspaces.

(b) Find the number of 2-dimensional subspaces of V.

Solution:

(a) By definition, any one-dimensional subspace looks like W = Span{v} for some non-zero
v € V. Explicitly, we have Span{v} = {0,v} because we are working over Fq, so there
are only two scalars to multiply by. Therefore, we see that distinct non-zero vectors
correspond to distinct one-dimensional subspaces. Since there are 2™ — 1 non-zero vectors
in V, we get 2™ — 1 one-dimensional subspaces.

(b) By definition, any 2-dimensional subspace looks like W = Span{vy, va} for vy, v linearly
independent vectors in V. Saying {v1,vs} is linearly independent is the same as saying
that v is not an Fo-multiple of vy, i.e. vy # v1 because the only scalars in Fy are 0 and
1. Therefore, any two choices of distinct non-zero vectors gives a linearly independent
subset, for a total of (an_ 1) possible linearly independent subsets of two elements. For
each subspace W = Span{v;,vs} there are (g) different possible bases for W. This
is because we have W = {0,v1,vs,v1 + v2}, and a choice of any two distinct elements
among the three non-zero vectors produces a linearly independent subset of two elements,
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i.e. a basis of W. This gives a total of different 2-dimensional subspaces.

3. View R as a Q-vector space. Prove that R has an uncountable basis.

Solution: Suppose that R was a finite dimensional Q-vector space. Then we would have
R = Q" for some n > 1. Since Q is countable, Q" is countable because it’s a finite product
of countable sets, and because R is uncountable this leads to a contradiction. Therefore, R
is infinite dimensional. Suppose that 5 = {v;}ien is a countable basis for R as a Q-vector
space. Since every element of R is a finite Q-linear combination of elements of 3, we see
that R = (Jo—, Span{vi,va,...,v,}. As Span{vy,...,v,} = Q" as Q-vector spaces (they’re
both n-dimensional), the right hand side is a countable union of countable sets, and therefore
countable, which gives a contradiction. Thus, R has uncountable dimension over Q.

7. Let V be a finite dimensional F-vector space, and let T': V' — V be a linear transformation.
(a) Show that there exists k > 1 such that ker(T*) = ker(T™) for all m > k.

(b) Use part (a) to show that there exists k > 1 such that ker(T*) Nim(T*) = 0.



Solution:

(a) Note that for any k > 0 we have ker(T*) C ker(T**!), because if T*(x) = 0 for some
x € V, we have T*+1(z) = T(T*(z)) = T(0) = 0. Now suppose to the contrary, that for
all k > 1, there exists an integer m > k such that ker(T*) # ker(T™), i.e. we have a strict
containment ker(T*) C ker(T™). Let m; be such a choice of m for k = 1, and define m;
for ¢ > 2 by such a choice of m for k¥ = m;_;. Then we are able to construct a strictly
increasing sequence of subspaces 0 C ker(T) C ker(T™) C ker(T™2) C .... Since the
containment at each stage is strict, we must have dimker(7") > dimker(7T™-1), and
since V is finite dimensional, there must eventually be some stage j where dim ker(7™7) =
dim(V), i.e. ker(T™) =V, so that T™ = 0. However, we then have for m > m;, that
T™ =T™ =0, contradicting our assumption. This proves what we want to show.

(b) Let k be as in part (a), and let z € ker(T*) Nim(T%). Then T*(z) = 0 and z = T*(y) for
some y € V. Applying T* to both sides says 0 = T*(x) = T?*(y), so that y € ker(T?).
Since ker(T*) = ker(T2*) by assumption, this says # = 0 as desired.

8. Let T : F3 — F3 denote the linear transformation that is represented by the matrix [Tz
110

0 1 0], with respect to 8 = {(0,1,1),(1,1,0),(0,0,1)} = {v1,ve,v3}. Find [T],, where
1 1 1

{e1,e2,e3} is the standard basis of F3.
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Solution: By definition, we have [T], = |[T(e1)], [T(e2)ly [T(e3)ly|, where [T'(e;)]y de-
| | |

notes the v-coordinates of T'(e;). By inspection, we have ey = vy + vy + v3, ea = vy + vs,

and ez = vs. Therefore, [T'(e1)]g = [Tgle1]s = (0,1,1), [T'(e2)]p = [T]sle2]g = (1,0,0) and

[T(es)lpg = [T)sles]s = (0,0,1). Changing to 7y-coordinates, we have [T'(e1)]y = v2 + v3 =

(1,1,1), [Te2)]y = v1 = (0,1,1) and [T'(e3)], = (0,0,1), so that [T],
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