
Final Review Problems

1. Let A =


1 0 2 −2
0 1 0 0
0 2 3 −2
0 2 2 −1


(a) Let J be a Jordan block of size n and eigenvalue λ. Compute the rational canonical form

of J .

(b) Compute the Jordan canonical form of A.

(c) Compute the rational canonical form of A.

2. Give an example of an operator T : R6 → R6 such that T 4 + T 2 + I = 0. How many possible
conjugacy classes of operators are there with this property?

3. Let J ⊂Mn(C) be a Jordan block of size n corresponding to λ.

(a) Prove that the Jordan form of J2 is the Jordan block of size n corresponding to λ2 if
λ 6= 0.

(b) Prove that if λ = 0 then the Jordan form of J2 has two blocks (both corresponding to

0) of size
n

2
,
n

2
if n is even or

n− 1

2
,
n+ 1

2
if n is odd.

(c) For each n ≥ 2, give an example of a matrix A ∈Mn(C) that has no square root.

4. Let A ∈Mn(C). Prove that A is nilpotent if and only if Tr(Ak) = 0 for all k ≥ 1.

5. (If you’ve taken analysis) View Mn(C) as a metric space by identifying it with Cn2

. Show that
the set of diagonalizable matrices is dense in Mn(C). That is, show that for any A ∈Mn(C)
there is a sequence of diagonalizable matrices Dn such that lim

n→∞
Dn = A.

Solutions

1. I intended for this to use the invariant factor rational canonical form, but I’ll do it with the
elementary divisor rational canonical form for the sake of the example. The intended solution
was to use part (a) to conjugate the Jordan canonical form to the invariant factor form of the
rational canonical form.

(a) The minimal and characteristic polynomial of J are both given by (x−λ)n. The elemen-
tary divisors corresponding to (x− λ) have the constraint that their product is (x− λ)n

and their least common multiple gives back (x− λ)n as well. In particular, this says we
can only have the single elementary divisor (x−λ)n, so that the rational canonical form
of J is the companion matrix of (x− λ)n.

(b) We find that cA(x) = (x − 1)4, and that mA(x) = (x − 1)2 by computation. This says
that the largest block size corresponding to 1 is 2. One can also check that ker(A − I)
is two dimensional, so we have two Jordan blocks. This says that the Jordan form of A

is given by J =


1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

.
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(c) The computation of the elementary divisor rational canonical form is essentially identical
to the computation of the Jordan canonical form. In particular, the constraints on the
elementary divisors say the largest power of x − 1 that can appear our list is 2, so the
possible lists are {x − 1, x − 1, (x − 1)2} and {(x − 1)2, (x − 1)2}. We’re interested in
Ex−1 = ker(A−I), which we already have found to be two dimensional. Therefore, there
are 2/1 = 2 elementary divisors corresponding to x− 1, so our list is {(x− 1)2, (x− 1)2}.

This says the elementary divisor rational canonical form is


0 −1 0 0
1 2 0 0
0 0 0 −1
0 0 1 2

.

2. Let Cf denote the companion matrix of the polynomial f(x). We know that the minimal poly-
nomial and characteristic polynomial of Cf are equal, and given by f . Recall that the minimal
polynomial of a block diagonal matrix is given by the least common multiple of the minimal
polynomials of each of its blocks. With this in mind, we may take A = Diag(0, 0, Cx4+x2+1)
and T (x) = Ax as an example of such an operator.

To classify all such operators up to conjugacy, we may count the number of possible rational
canonical forms (either version) of T . Note that x4 +x2 +1 = (x2−x+1)(x2 +x+1), so there
are three possibilities for mT : x2−x+1, x2 +x+1, x4 +x2 +1. Since the minimal polynomial
and the characteristic polynomial have the same irreducible factors and deg(cT ) = 6, we must
have that cT = (x2 − x + 1)2(x2 + x + 1) or cT = (x2 − x + 1)(x2 + x + 1)2. For your sake,
I’ll use the elementary divisor version of the rational canonical form.

First, suppose that cT = (x2−x+1)2(x2+x+1). The product of the elementary divisors must
give cT , so the possible lists are {x2−x+1, x2−x+1, x2 +x+1} or {(x2−x+1)2, x2 +x+1}.
Since the least common multiple of the elementary divisors must give back the minimal poly-
nomial and the minimal polynomial has no repeated irreducible factors, the second list is not
possible so there is a single choice of rational canonical form.

Similarly, suppose that cT = (x2 − x + 1)(x2 + x + 1)2. The product of the elementary di-
visors must give back cT , so the possible lists are {x2 − x + 1, x2 + x + 1, x2 + x + 1} and
{x2 − x+ 1, (x2 + x+ 1)2}. The latter is again not possible because the minimal polynomial
must have no repeated irreducible factors, so once again there’s a single rational canonical
form.

Combing the two cases, we end up with a total of two different conjugacy classes of operators.

3. (a) First, observe that the only eigenvalue of J2 is λ2: this is because J is upper triangular
so J2 has λ2 as its diagonal entries. Note that J2−λ2I = (J +λI)(J −λI). The matrix
J + λI has a single eigenvalue, namely 2λ 6= 0. This says that J + λI is invertible, so
that ker(J2 − λ2I) = ker(J − λI). Since the dimension of ker(J2 − λ2I) is the number
of Jordan blocks corresponding to λ2 in the Jordan form of J2, we see that the Jordan
form of J2 consists of a single Jordan block corresponding to the eigenvalue λ.

(b) First suppose that n is even. Since the minimal polynomial of J is given by xn, we easily
see that the minimal polynomial of J2 is xn/2. The power of x in the minimal polynomial
tells us the size of the largest Jordan block corresponding to 0, which must be n/2. Next,
it’s easy to check that dim ker(J2) = 2 by computation, so we have two Jordan blocks
for 0. This forces the Jordan form of J to have two blocks corresponding to 0 of size
n/2. Similarly, if n is odd then the minimal polynomial of J2 is given by x(n+1)/2. The
argument above shows that we have exactly two Jordan blocks corresponding to 0, and
therefore they must have sizes (n− 1)/2 and (n+ 1)/2 as desired.

(c) Let J be a Jordan block of size n corresponding to 0. I claim that J has no square
root. Suppose otherwise, that J = S2 for some matrix S. As Jn = 0, we must have
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that S2n = 0. This says that the minimal polynomial of S is a power of x, and since
the minimal and characteristic polynomial of S have the same irreducible factors, we
actually see that Sn = 0. If n is even, we see that Jn/2 = (S2)n/2 = Sn = 0 and if n is
odd, we see that J (n+1)/2 = (S2)(n+1)/2 = Sn+1 = 0. In either case, we have n/2 < n
and (n + 1)/2 < n, which contradict that fact that the minimal polynomial of J is xn.
Therefore, J has no square root as desired.

4. Firstly, observe that if λ1, . . . , λn are the eigenvalues of A, then λk1 , . . . , λ
k
n are the eigenvaues

of A. Let J be the Jordan form of A. Then A and J are similar, so Ak and Jk are also similar.
J is an upper triangular matrix with λi on it’s diagonals, and so Jk has λki as its diagonals.
It’s then clear from the definition of the characteristic polynomial that Ak has eigenvalues
λk1 , . . . , λ

k
n.

Now, suppose that A is nilpotent. Since the trace of a matrix is the sum of its eigenvalues
and the eigenvalues of Ak for any k are still just 0, we see that Tr(Ak) = 0 for all k ≥ 1.
Conversely, suppose that Tr(Ak) = 0 for all k ≥ 1. For contradiction, suppose that A has
non-zero eigenvalues λ1, . . . , λr of multiplicities m1, . . . ,mr. Then By our earlier observation,
we have Tr(Ak) = m1λ

k
1 + . . .+mrλ

k
r = 0. Writing down this relation for k = 1, 2, . . . , r gives

a matrix equation 
λ1 λ2 . . . λr
λ21 λ22 . . . λ2r
...

...
...

λr1 λr2 . . . λrr



m1

m2

...
mr

 =


0
0
...
0



. By properties of the determinant, we have det(


λ1 λ2 . . . λr
λ21 λ22 . . . λ2r
...

...
...

λr1 λr2 . . . λrr

) = λ1 . . . λr det(


1 1 . . . 1
λ1 λ2 . . . λr
...

...
...

λr−11 λr−12 . . . λr−1r

).

The preceding matrix is a Vandermonde matrix, and is invertible because all λi are distinct.
Therefore, mi = 0 for all i, which is a contradiction because mi ≥ 1 by definition. Therefore,
all eigenvalues of A must be 0, so that cA(x) = xn. This says that that mA(x) = xN for some
N , i.e. A is nilpotent.

5. Let J be the Jordan canonical form of A, so that A = SJS−1 for some matrix S. Our
first observation is that matrix multiplication is continuous, because the entries of SJS−1

are just given by polynomials in the entries of S,J ,and S−1. Therefore, if we can find a
sequence of diagonalizable matrices Dn such that lim

n→∞
Dn = J , we have by continuity that

A = lim
n→∞

SDnS
−1. Therefore, it suffices to prove this for a Jordan block, because if J =

Diag(J1, . . . , Jr) and lim
n→∞

Di,n = Ji, we have lim
n→∞

Diag(D1,n, . . . , Dr,n) = J . If J is Jordan

block of size n and eigenvalue λ, pick n distinct numbers ε1, . . . , εn and consider the matrix
Dn obtained by adding εi/n to the diagonal entries of J . Then Dn has distinct eigenvalues
(because they’re the diagonal entries!) and therefore Dn is diagonalizable. Clearly lim

n→∞
Dn =

J , so we’re done.
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