Discussion Review Problems

- 1. Let $V \subset C^{\infty}(\mathbb{R})$ be the subspace of smooth functions that are 1-periodic, i.e. that satisfy f(x+1) = f(x) for all $x \in \mathbb{R}$. Equip V with the structure of an inner product space by $\langle f, g \rangle = \int_0^1 f(x)g(x) \, dx$. Let $D: V \to V$ denote the derivative map. Compute the adjoint of D. Is D normal? Self-adjoint?
- 2. Let V be a finite dimensional real inner product space. A self-adjoint operator $T: V \to V$ is called *positive definite* if $\langle T(v), v \rangle > 0$ for all $v \neq 0$.
 - (a) Prove that T is positive definite if and only if all eigenvalues of T are positive.
 - (b) Prove that if T is invertible, then T^*T is positive definite.
- 3. Let $T: V \to V$ be a normal operator on a finite dimensional inner product space.
 - (a) Prove that $\operatorname{Im}(T) = \operatorname{Im}(T^*)$.
 - (b) Prove that $\ker(T^k) = \ker(T)$ and $\operatorname{Im}(T^k) = \operatorname{Im}(T)$ for all $k \ge 0$.
- 4. Let $T: V \to V$ be a unitary operator on a finite dimensional complex inner product space. Prove that $T = S^2$ for some unitary operator $S: V \to V$.
- 5. Let $T: V \to V$ be a projection on a finite dimensional inner product space. Show that if $||T(x)|| \le ||x||$ for all $x \in V$, then T is an orthogonal projection.
- 6. Let $B: M_2(F) \times M_2(F) \to F$ be defined by B(A, B) = Tr(AB), where Tr(X) denotes the trace of the matrix X. Prove that B is a non-degenerate bilinear form.

Solutions

- 1. The adjoint D^* satisfies the relation $\langle D(f), g \rangle = \langle f, D^*(g) \rangle$ for any $f, g \in V$. The left hand side is $\int_0^1 f'(x)g(x) dx$. Integrating by parts, this is $-\int_0^1 f(x)g'(x) dx = \langle f, -D(g) \rangle$. This tells us that $D^* = -D$. This shows that D is clearly normal and not self-adjoint.
- 2. (a) Suppose that T is positive definite, and let v be an eigenvector of T with eigenvalue λ . Then $\langle T(v), v \rangle = \lambda ||v||^2 > 0$ by assumption, so $\lambda > 0$. Conversely, suppose that all eigenvalues of T are positive. Since T is self-adjoint, we can find an orthonormal eigenbasis $\{v_1, \ldots, v_n\}$ of V. Then the above shows that $\langle T(v_i), v_i \rangle > 0$ for all i, and so by the bilinearity of the inner product (and orthogonality of the v_i), we have $\langle T(v), v \rangle > 0$ for all v.
 - (b) If T is invertible, then $0 < ||T(x)||^2 = \langle T(x), T(x) \rangle = \langle x, T^*T(x) \rangle = \langle T^*T(x), x \rangle$ for any $x \in V$.
- 3. (a) I claim that $\ker(T) = \ker(T^*)$. This follows because $T(x) = 0 \iff ||T(x)||^2 = 0 \iff \langle T(x), T(x) \rangle = 0 \iff \langle x, T^*T(x) \rangle = 0 \iff x, TT^*(x) \rangle = 0 \iff \langle T^*(x), T^*(x) \rangle = 0 \iff ||T^*(x)||^2 = 0 \iff T^*(x) = 0$. We then have $\operatorname{Im}(T) = \ker(T^*)^{\perp} = \ker(T)^{\perp} = \operatorname{Im}(T^*)$ as desired.
 - (b) We have two chains of subspaces $\ker(T) \subset \ker(T^2) \subset \ldots$ and $\ldots \subset \operatorname{Im}(T^2) \subset \operatorname{Im}(T)$, so it sufficies to prove only the other inclusions. To do so, we just prove that $\ker(T^k) = \ker(T)$ for all k, because then by rank nullity one finds that $\operatorname{rank}(T^k) = \operatorname{rank}(T)$ giving the other equality.

Suppose that $x \in \ker(T^k)$. Then for any $y \in V$, we have $0 = \langle T^k(x), y \rangle = \langle T^{k-1}(x), T^*(y) \rangle$. This says that $T^{k-1}(x) \in \operatorname{Im}(T^*)^{\perp} = \operatorname{Im}(T)^{\perp} = \ker(T)$. This means $T^{k-1}(x) \in \operatorname{Im}(T) \cap \operatorname{Im}(T)^{\perp}$ so $T^{k-1}(x) = 0$. This says that $\ker(T^k) \subset \ker(T^{k-1})$, so that $\ker(T^k) = \ker(T^{k-1})$. An induction argument then shows that $\ker(T^k) = \ker(T)$ for all k.

- 4. Since T is unitary, we can find an orthonormal basis $\{v_1, \ldots, v_n\}$ of V. Let λ_i be the associated eigenvalue of v_i . We know that $|\lambda_i| = 1$. Define $S : V \to V$ by $S(v_i) = \sqrt{\lambda_i}v_i$ (choose either of the two complex square roots). Then clearly $S^2(v_i) = \lambda_i v_i = T(v_i)$, so $T = S^2$. Since $||S(v_i)|| = |\sqrt{\lambda_i}||v_i|| = ||v_i|| = 1$, we see that S is also unitary as desired.
- 5. We wish to show that $\operatorname{Im}(T)^{\perp} = \ker(T)$. Suppose that $v \in \operatorname{Im}(T)^{\perp}$ but that $T(v) \neq 0$. Write w = T(v), and let x = sw + v for some $s \in \mathbb{R}$ to be determined. Note that $w \in \operatorname{Im}(T)$, by the Pythagorean theorem, we have $||x||^2 = s^2 ||w||^2 + ||v||^2$. Note that $T(w) = T^2(v) = T(v) = w$ because T is a projection, so T(x) = sT(w) + T(v) = (s+1)w. This says $||T(x)||^2 = (s+1)^2 ||w||^2$. By assumption, we then find $(s+1)^2 ||w||^2 \leq s^2 ||w||^2 + ||v||^2$, so that $2s ||w||^2 \leq ||v||^2 - ||w||^2$. Since v, w are fixed and $w \neq 0$ by assumption, we may choose such an s to make this inequality false. This gives a contradiction, so T is an orthogonal projection as desired.
- 6. To check that B is non-degenerate, we can check that $[B]_{\beta}$ is invertible where β is a basis of $M_2(F)$. Take $\beta = \{E_{11}, E_{12}, E_{21}, E_{22}\} = \{v_1, v_2, v_3, v_4\}$ to be the standard basis of $M_2(F)$.

Then by definition, we have
$$([B]_{\beta})_{ij} = B(v_i, v_j)$$
. One can check that $[B]_{\beta} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$

so that $det([B]_{\beta}) = -1$ says $[B]_{\beta}$ is invertible.