Discussion Review Problems

- 1. Let V be a vector space, and let $U, W \subset V$ be subspaces. Prove that $(U + W)/(U \cap W) = U/(U \cap W) \oplus W/(U \cap W)$.
- 2. Let $f, g \neq 0 \in V^*$ be linear functionals on the *n* dimensional vector space *V*. Prove that $g = \lambda f$ for some $\lambda \neq 0 \in F$ if and only if $\ker(f) = \ker(g)$.
- 3. Let $T: V \to V$ be a linear operator on the *n* dimensional vector space *V*, and let $W \subset V$ be a *T*-invariant subspace. We say that *W* is *T*-irreducible if the only *T*-invariant subspaces of *W* and $\{0\}$ and *W*. Prove that if *W* is *T*-irreducible and $f \in \mathcal{L}(W)$ satisfies $f \circ T = T \circ f$, then f = 0 or *f* is an isomorphism.
- 4. Let $T: V \to V$ be a linear operator on the *n* dimensional vector space *V*. We say that *T* is *nilpotent* if there is a non-negative integer *N* such that $T^N = 0$.
 - (a) Prove that if T is nilpotent, then $T^n = 0$.
 - (b) Prove that if T is nilpotent and also diagonalizable, then T = 0.
- 5. Let $T: V \to V$ be an invertible linear operator on the *n* dimensional vector space *V*. Prove that $T^{-1} = g(T)$ for some polynomial $g(x) \in F[x]$.
- 6. Let $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$. Consider the linear operator $T : \mathbb{R}^3 \to \mathbb{R}^3$ given by T(v) = Av. Compute the minimal polynomial of T.

Solutions

- 1. Let $x \in (U+W)/(U \cap W)$. Then $x = (u+w) + (U \cap W)$ for some $u \in U$ and $w \in W$, so $x = (u+U\cap W) + (w+U\cap W)$, which says that $(U+W)/(U\cap W) = U/(U\cap W) + W/(U\cap W)$. Now let $x \in U/(U \cap W) \cap W/(U \cap W)$. Then $x = u + (U \cap W) = w + (U \cap W)$ for some $u \in U$ and $w \in W$. This means that $u w \in U \cap W$, and since $U \cap W$ is a subspace of W, this means that $u \in W$ as well. Thus, we have $x = u + (U \cap W) = U \cap W$. This says their intersection is trivial, so the sum is direct and we conclude that $(U+W)/(U\cap W) = U/(U \cap W) \oplus W/(U \cap W)$ as desired.
- 2. By rank-nullity, we see that dim(ker(f)) = n 1 because f is non-zero. Let $\{v_1, \ldots, v_{n-1}\}$ be a basis of ker(f) and extend this to a basis $\{v_1, \ldots, v_{n-1}, v\}$ of V. By definition, we must have $f(v) \neq 0$.

First, suppose that $g = \lambda f$ for some $\lambda \in F$. Then for each v_i , we have $g(v_i) = \lambda f(v_i) = 0$, so ker $(f) \subset$ ker(g). If $x \in$ ker $(g) \setminus$ ker(f), write $x = c_1v_1 + \ldots + c_{n-1}v_{n-1} + c_nv$ for some $c_i \in F$. Necessarily, we must have $c_n \neq 0$. We then have $f(x) = c_n f(v)$, so $0 = \lambda f(v)$ says $\lambda = 0$, a contradiction. Therefore, ker(f) = ker(g). Now, assume that ker(f) = ker(g). Then by definition, Im(f) = Span $\{f(v)\}$ and Im(g) = Span $\{g(v)\}$. Define $\lambda = g(v)/f(v)$ which is non-zero by assumption, so that $\lambda f = g$ since we need only check they are equal on v.

- 3. Let $x \in \text{ker}(f)$. Then f(T(x)) = T(f(x)) = T(0) = 0 by assumption, which says that $T(x) \in \text{ker}(f)$, i.e. ker(f) is a *T*-invariant subspace of *W*. Since *W* is *T*-irreducible, we must have ker(f) = 0 or ker(f) = W by definition. The former says *f* is an isomorphism, while the latter says that f = 0.
- 4. (a) Since $T^N = 0$ for some N, we see that x^N kills T. Therefore, the minimal polynomial of T is of the form x^k for some $1 \le k \le N$. Since the minimal polynomial and characteristic polynomial share the same roots, and the characteristic polynomial is of degree n, this forces $c_T(x) = x^n$. The Cayley-Hamilton theorem then says that $T^n = 0$.
 - (b) If T is nilpotent and diagonalizable, then the minimal polynomial splits into distinct linear factors. Since the above showed that $m_T(x) = x^k$ for some k, this forces k = 1 so that $m_T(x) = x$. This then tells us that T = 0 as desired.
- 5. Let $c_T(x) = a_0 + \ldots + x^n$ be the characteristic polynomial of T. By the Cayley-Hamilton theorem, we have $c_T(T) = 0$, so $a_0I_V + \ldots + T^n = 0$. This says $a_0I_V = -(a_1T + \ldots + a_{n-1}T^{n-1} + T^n) = T(-a_1I_V \ldots a_{n-1}T^{n-2} T^{n-1})$. Since a_0 is given by the determinant of T (up to sign) and T is invertible, we see that $a_0 \neq 0$. Therefore, $I_V = T(-\frac{1}{a_0}(a_1I_V + \ldots + a_{n-1}T^{n-2} + T^{n-1})$, so that T^{-1} is given by g(T) where $g(x) = -\frac{1}{a_0}(a_1 + \ldots + a_{n-1}x^{n-2} + x^{n-1})$.
- 6. One can check that $c_T(x) = x^2(x-3)$, so that T has eigenvalues 0 and 3. Note that since $E_0 = \ker(T)$ and $\operatorname{rank}(T) = 1$, we have dim $E_0 = 2$ so this forces $\mathbb{R}^3 = E_0 \oplus E_3$. This tells us T is diagonalizable, so the minimal polynomial is obtained by taking a single linear factor corresponding to each eigenvalue, giving m(x) = x(x-3).