
Discussion Review Problems

1. Let V be a vector space, and let U,W ⊂ V be subspaces. Prove that (U + W )/(U ∩W ) =
U/(U ∩W )⊕W/(U ∩W ).

2. Let f, g 6= 0 ∈ V ∗ be linear functionals on the n dimensional vector space V . Prove that
g = λf for some λ 6= 0 ∈ F if and only if ker(f) = ker(g).

3. Let T : V → V be a linear operator on the n dimensional vector space V , and let W ⊂ V be
a T -invariant subspace. We say that W is T -irreducible if the only T -invariant subspaces of
W and {0} and W . Prove that if W is T -irreducible and f ∈ L(W ) satisfies f ◦ T = T ◦ f ,
then f = 0 or f is an isomorphism.

4. Let T : V → V be a linear operator on the n dimensional vector space V . We say that T is
nilpotent if there is a non-negative integer N such that TN = 0.

(a) Prove that if T is nilpotent, then Tn = 0.

(b) Prove that if T is nilpotent and also diagonalizable, then T = 0.

5. Let T : V → V be an invertible linear operator on the n dimensional vector space V . Prove
that T−1 = g(T ) for some polynomial g(x) ∈ F [x].

6. Let A =

1 1 1
1 1 1
1 1 1

. Consider the linear operator T : R3 → R3 given by T (v) = Av.

Compute the minimal polynomial of T .
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Solutions

1. Let x ∈ (U + W )/(U ∩W ). Then x = (u + w) + (U ∩W ) for some u ∈ U and w ∈ W , so
x = (u+U∩W )+(w+U∩W ), which says that (U+W )/(U∩W ) = U/(U∩W )+W/(U∩W ).
Now let x ∈ U/(U ∩W )∩W/(U ∩W ). Then x = u+ (U ∩W ) = w+ (U ∩W ) for some u ∈ U
and w ∈W . This means that u−w ∈ U ∩W , and since U ∩W is a subspace of W , this means
that u ∈W as well. Thus, we have x = u+ (U ∩W ) = U ∩W . This says their intersection is
trivial, so the sum is direct and we conclude that (U+W )/(U∩W ) = U/(U∩W )⊕W/(U∩W )
as desired.

2. By rank-nullity, we see that dim(ker(f)) = n − 1 because f is non-zero. Let {v1, . . . , vn−1}
be a basis of ker(f) and extend this to a basis {v1, . . . , vn−1, v} of V . By definition, we must
have f(v) 6= 0.

First, suppose that g = λf for some λ ∈ F . Then for each vi, we have g(vi) = λf(vi) = 0,
so ker(f) ⊂ ker(g). If x ∈ ker(g) \ ker(f), write x = c1v1 + . . . + cn−1vn−1 + cnv for some
ci ∈ F . Necessarily, we must have cn 6= 0. We then have f(x) = cnf(v), so 0 = λf(v) says
λ = 0, a contradiction. Therefore, ker(f) = ker(g). Now, assume that ker(f) = ker(g). Then
by definition, Im(f) = Span{f(v)} and Im(g) = Span{g(v)}. Define λ = g(v)/f(v) which is
non-zero by assumption, so that λf = g since we need only check they are equal on v.

3. Let x ∈ ker(f). Then f(T (x)) = T (f(x)) = T (0) = 0 by assumption, which says that
T (x) ∈ ker(f), i.e. ker(f) is a T -invariant subspace of W . Since W is T -irreducible, we must
have ker(f) = 0 or ker(f) = W by definition. The former says f is an isomorphism, while the
latter says that f = 0.

4. (a) Since TN = 0 for some N , we see that xN kills T . Therefore, the minimal polynomial of
T is of the form xk for some 1 ≤ k ≤ N . Since the minimal polynomial and characteristic
polynomial share the same roots, and the characteristic polynomial is of degree n, this
forces cT (x) = xn. The Cayley-Hamilton theorem then says that Tn = 0.

(b) If T is nilpotent and diagonalizable, then the minimal polynomial splits into distinct
linear factors. Since the above showed that mT (x) = xk for some k, this forces k = 1 so
that mT (x) = x. This then tells us that T = 0 as desired.

5. Let cT (x) = a0 + . . . + xn be the characteristic polynomial of T . By the Cayley-Hamilton
theorem, we have cT (T ) = 0, so a0IV + . . . + Tn = 0. This says a0IV = −(a1T + . . . +
an−1T

n−1 +Tn) = T (−a1IV − . . .− an−1T
n−2−Tn−1). Since a0 is given by the determinant

of T (up to sign) and T is invertible, we see that a0 6= 0. Therefore, IV = T (− 1

a0
(a1IV + . . .+

an−1T
n−2+Tn−1), so that T−1 is given by g(T ) where g(x) = − 1

a0
(a1+. . .+an−1x

n−2+xn−1).

6. One can check that cT (x) = x2(x − 3), so that T has eigenvalues 0 and 3. Note that since
E0 = ker(T ) and rank(T ) = 1, we have dimE0 = 2 so this forces R3 = E0 ⊕ E3. This tells
us T is diagonalizable, so the minimal polynomial is obtained by taking a single linear factor
corresponding to each eigenvalue, giving m(x) = x(x− 3).
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