Jordan Forms

 $T: \land \longrightarrow \lor$ if CT splits, can find basis β with $(J_i)_{K} \neq J_{Orden}$ $T_{T}J_{P} = (J_{K})_{K} \neq F_{Orm}$ $J_{i} = \begin{pmatrix} \lambda_{i} & 0 \\ 0 & \lambda_{i} \end{pmatrix} \xrightarrow{Jordan} \\ J_{i} & J_{i} \end{pmatrix}$ lincor operators are classified up to conjugacy by JCF. over C, G always splits so JEF will always exist.

Recap of Theory: $K_{\chi} = \frac{2}{\chi} \times EV : (T - \chi) = 0$ for some p > 0generalized expensione of L

elements are called generalized ergennectors for Z.

Let XEKy and Suppose that P is the Smallest integer Such that $(T - \lambda E)^{\nu} = 0.$

Then $(T-\lambda E) \xrightarrow{per} 0$.

 $(T-\lambda T)(T-\lambda T)^{P-1} = 0$

 $= T\left(\left(T-\chi I\right)^{P-1}\right) - \chi\left(T-\chi I\right)^{P-1} = 0$

(T-XI)× is called find vector. Each cycle contains precisely one ergenvector (namely, (T-XI)*) Suppose $\gamma = \sum_{i=1}^{p-1} (T-\lambda T_i)^{p-1} \times \zeta$ $= \{V_1, \dots, V_p\}$ (s a cycle. W= Spon(Z) Then Wis T-Invaciant. Udry?

 $T(\gamma_{i}) = \lambda_{i}$ $(\dot{T} - \lambda I) \vee (= (T - \lambda I)) = (V + V)$ $= (T - \lambda I) P - (i - i) X = Y_{i-1}$ $T_{V_i} = \lambda_{V_i} + \gamma_{i-1}$ $\begin{bmatrix} T_{w} \end{bmatrix} = \begin{pmatrix} \lambda \\ \Theta \\ \vdots \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{pmatrix}$ Thm: Suppose that G Splits. Then there is a basis B= R. DB, D-~ Br

Pi are bases of Kx: Pi consists of disjoint Cycles for X:

Then $[T]_p = J(F(T))$.

Bi = Z(T-XEIZ, (T-XE)y, y, (T-XE)x, x [length 3 length 2

Jordan Volocks

Cycles

Conputing JCF Xi-7Xic ergenalis

1.) $dim(K_{\chi}) = alg. mult(\chi) \in \mathcal{K}_{\chi} = Ker((T-\chi I)) m = 1$

 \Rightarrow [Sum of sizes of blocks] = $dim(K_{\chi}) = alg. mult(\chi)$

2.) Ef JCF(T)= (Ji, je) Suppose Jund Jag are block, for X.

Then dim Ker (Ji-X) = Size (J:)-1. $\overline{T-\lambda \Gamma} = \begin{pmatrix} \overline{J}, -\lambda \Gamma \\ \cdot & \overline{J}_{\ell} - \lambda \Gamma \end{pmatrix}$ \Rightarrow rank $(T-\lambda T) = dim V - # Zero$ Columy = dim 1/ -9 => dim Ker (T-XI) = dim (E) $= qm(\lambda) = q.$

blocks for $\lambda = Gm(\lambda)$

 $3.) M_{T} \begin{pmatrix} J_{1} & J_{2} \end{pmatrix}$ $= \left(m_{T}(J_{1}), m_{T}(J_{2}) \right)$ $m_T = (x - \lambda_i)^{e_i} \dots (x - \lambda_k)^{e_k}$ each Ji Mas min poly. $(X - \lambda_i)$ size J_i So $fei max { Sizes of block$ $for <math>\lambda : P$ $m_{T} = TT(x-\lambda :)^{ei}$

to get #, compute gm(21). $dim(E_2) = gm(2) = 1$. So there is one block for $\lambda = 2$

 $J(F(T)) = (T3) \qquad (up to$ permutationof block

Car read off mr.

Cr=mp in this care.

 $E_{X}: C_{(x)} = (x-2)^{3}(x-3)^{2}$ $M_{T}(x) = (x-2)^{2}(x-3)$ what is J(F(T)?

largest block size for $\lambda = 2$ is 2 largest block Size bou &= 3 is (

Sum of sizes $\lambda = 2 = 3$ Sum of sizes $\lambda = 3 = 3$

 $= 3 \quad 2 \times 2 \quad \text{black}, \quad 1 \times 1 \quad \text{black} \quad \lambda = 2$ $= 3 \quad \text{three } 4 \times 1 \quad \text{blacks} \quad \lambda = 3$

y) to permutation of blocks.

$$M_{T}(x) = (x-2)^{3}(x-8)^{2}(x-4)(x-5)$$

What if
$$C_{T}(x) = (x-2)^{4}(x-3)^{4}$$

 $M_{T}(x) = (x-2)^{2}(x-3)^{2}$?

San of sizes for $\lambda = 2 = -4$ have a 2x2 block = 1 two 2x2 block OR 2x2 block, two 1x1 block. Some for $\lambda = 3$,

4 possible Ranonical forme up to permutation:

