This is false!  

$$V = F[X]$$
  
 $B_i = \frac{2}{2} [tX_i^i X tX_i^i \dots ]$   
Claimin it's not possible to form  
a basis for V with a varter  
from each  $B_i$ .

ai, bi.

Suppose $1 = \sum_{i=1}^{n} C_i (x^{a_i} + x^{b_i})$  i = 1for some  $C_i$ , all  $c_i \neq 0$ .

Note that on of the exponents  
that appears in the snon must be 
$$O$$
:  
otherwise, plug in  $K=0$  to RHS  
to get  $1=0$ .

Also note if an exponent appears in one term, it must appear is another in order to concel out.

2n=1 ≤ n-1, So ≤ n-1 non-zero exponents that con

appear. Exact team in Sum comes from Bai or Bbi Pidgeon hole Suys Hure are two terms in the Sun coming from Some basis The

S.  $T: V \rightarrow V$   $dim_{e} V = 6$  $W_{1}, W_{2} \subset V$ 

din <sub>e</sub> w<sub>1</sub> = din <sub>e</sub> w<sub>2</sub> = 4 ding WINWZ = 2.  $M_{T_{1}} = (x-i)(x-2)(x-3)$  $M_{\overline{1}2} = \chi(\chi - 1)$ 

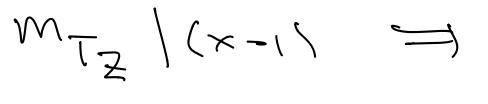
a.) m<sub>TZ</sub>/M<sub>T</sub>

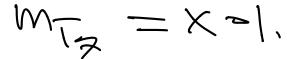
becanse

M72/M52

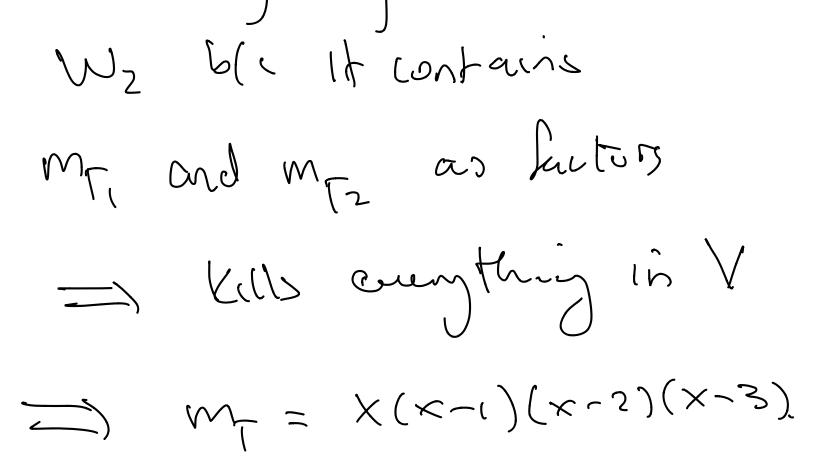
ZCW, ZCWZ

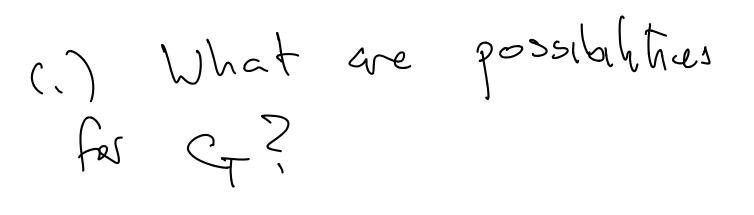


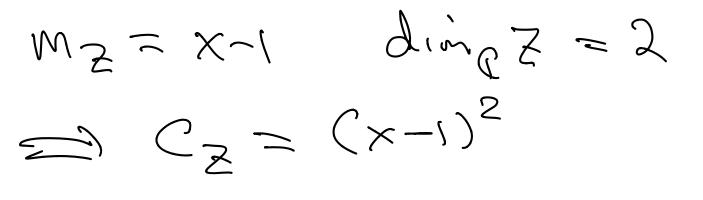


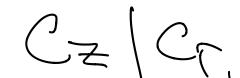


 $= \int_{Z} \int_{Z} = 0$  (z = 1 $w, c \vee$  $m_{\overline{1}}/m_{\overline{1}}$ 6.1  $w_2 \subset \vee$ miz Im X(x-1)(x-2)(x-3) [m<sub>t</sub>  $\longrightarrow$ Note that  $W, + W_2 = V$ for diminsion reasons. X(x-1)(x-2)(x-3) Kills everything in W, and







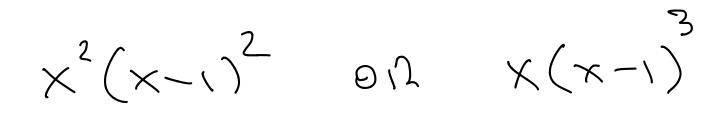


## $C \leq (C^{2})$

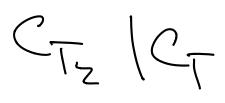






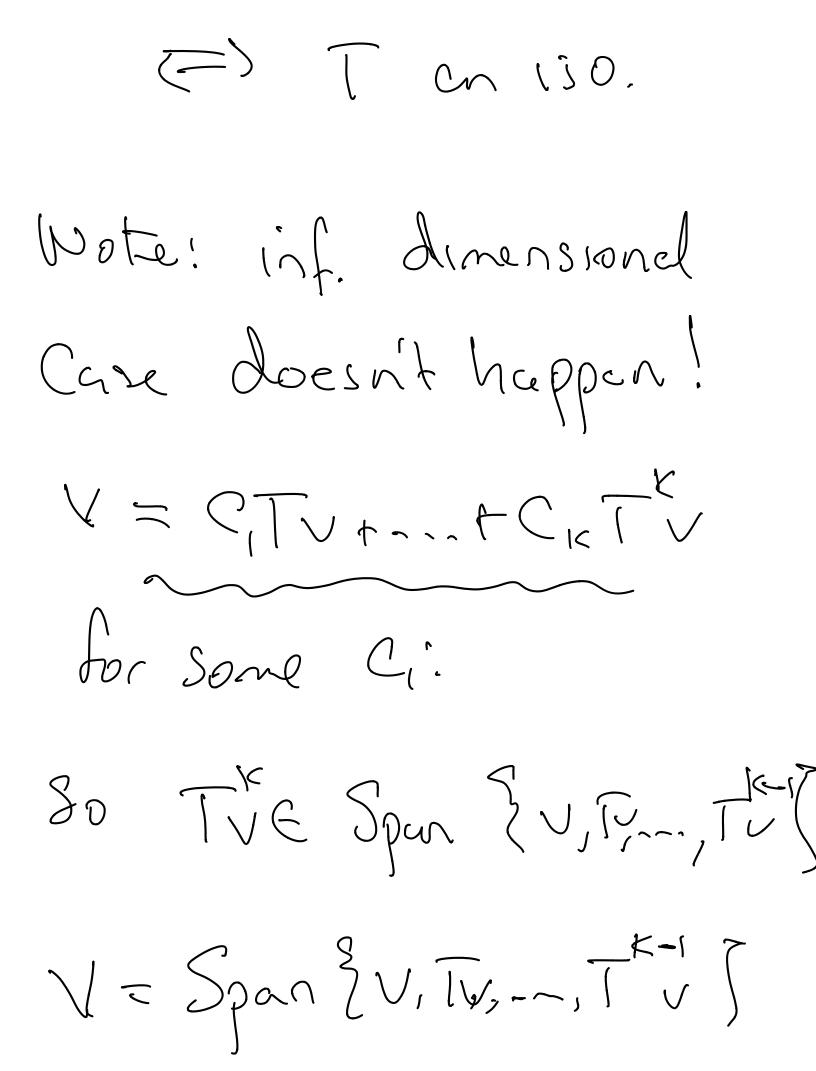






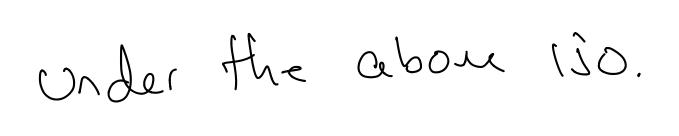
 $\sum_{i} C_{i} = \chi^{2}(\chi_{-1})^{2}(\chi_{-2})(\chi_{-3})$  $C_{T} = X(X-1)^{3}(X-2)(X-3)$  $d.) \quad m_{T} = \chi(\chi_{-1})(\chi_{-2})(\chi_{-3})$ distinct lineer factors has =) T diagonalizable. 4. V= Span Zv, Iv, -- S

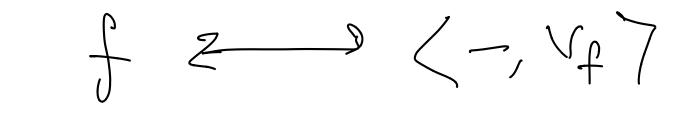
V= Span ZTU, --. J

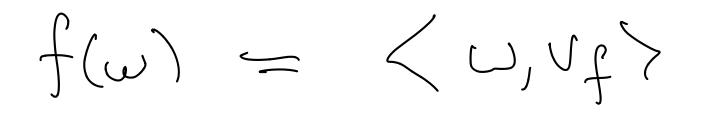


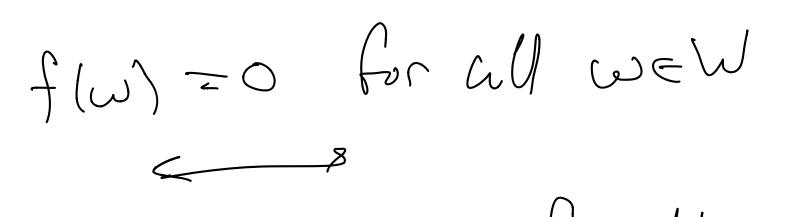
Inner Products and Ducl Space f.d. Vinner prod Space over IR. There and canonical iso.  $f: V \longrightarrow V^*$  $\sim$  (-) < -,  $\sqrt{7}$ Recall WCV 

 $W = \{f \in V^*, f(w) = 0\}$ frad we w

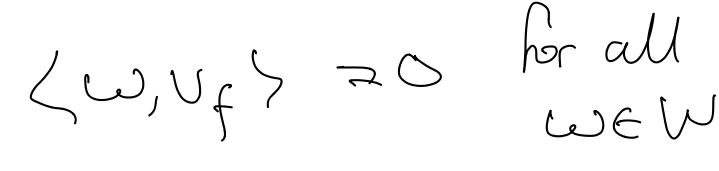






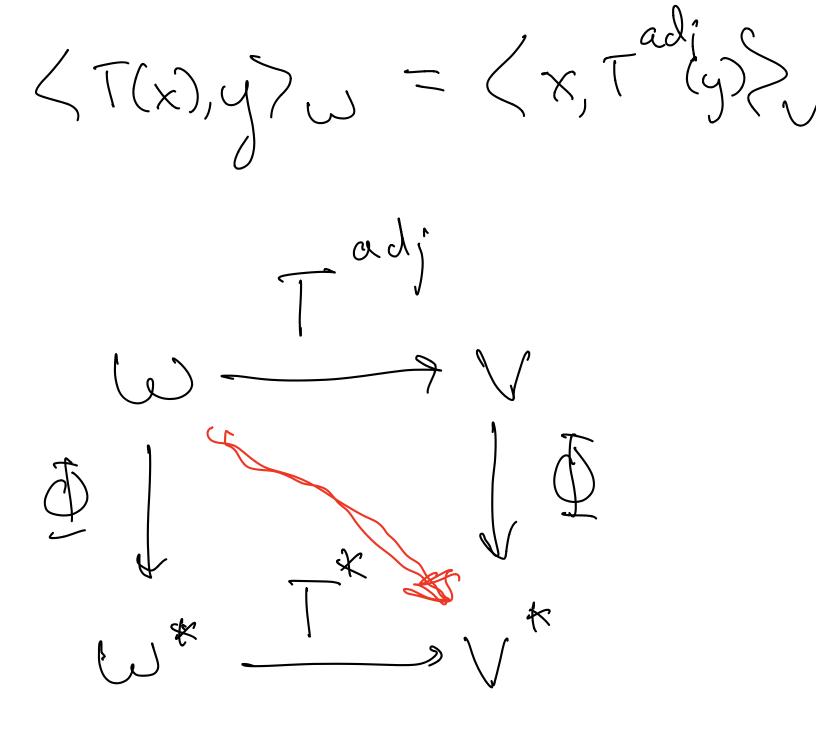






LE ULEW. 50 Wt K > WO undes the 130.

How does deal map and adjoint relate?  $T: V \longrightarrow W$  (fdTPS)Tadj: W-JV



Thm. This duagram commutes i.e. \$\Delta To D

Proof. Pick wew.  $(T^* \overline{\Phi})(\omega) = T^* (\overline{\Phi}(\omega))$  $\Phi(\omega) = f_{\omega} \qquad f_{\omega}(-) = \langle -\mu \rangle$  $T^*(f_{\omega}) = f_{\omega} \bullet T$ what does this do to a vector J<sup>Z</sup>  $(f_{\cup} \circ T)(v) = f_{\cup}(T(v))$  $= \left( \langle T(v), w \rangle \right)$ 

 $(\Phi \circ T \circ \dot{\Phi})(\omega \zeta$  $= \overline{\Phi}(\overline{(\omega)})$  $= \langle -, T^{\alpha \partial j}(\omega) \rangle \langle \langle \rangle \rangle$ what doe, this do to avector u?  $\langle \cup, (a) \rangle \rangle$ Red boxes ore cqual by def.

 $= (T^* \Phi)(\omega) = (\Phi T^{ad})(\omega)$ as functionals, ble agree on arbitrary vev.  $= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2}} = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2}} \int_{-\infty}^{\infty} \frac{1}$ Can Solve her Say, Tadj:  $T^{adj} = \overline{P}^{-1} \overline{T}^* \overline{D}$ Explicity, if Pison D.A. basis of V gison o.n. basis of W

B\* dual bases well recover the fact that Tradil P = (Tradil P)[]t]pt None of this work, over C. Complex mer product spaces

## cre werrd!