Challenge problems Tim Smits

Unless otherwise stated, $(V, \langle -, - \rangle)$ is an *n* dimensional inner product space over $F = \mathbb{R}$ or \mathbb{C} .

1. (Orthogonal Projections) A linear operator $T: V \to V$ is called a *projection* if $T^2 = T$.

- (a) Suppose that T is a projection. Prove that $V = \text{Im}(T) \oplus \text{ker}(T)$.
- (b) Suppose that T is a projection. Prove that $T = T^*$ if and only if $\text{Im}(T) \perp \text{ker}(T)$.

Operators satisfying the condition of part (b) are called orthogonal projections.

- (c) Prove that if T is a projection, that $||T(x)|| \le ||x||$ for any $x \in V$.
- (d) Let $A, B \in M_n(\mathbb{C})$ be such that $A^2 = A$ and $B^2 = B$. Prove that A and B are similar if and only if rank $(A) = \operatorname{rank}(B)$.
- 2. (Isometries) An *isometry* is a linear operator $T: V \to V$ such that ||T(v)|| = ||v|| for all $v \in V$. Prove the following are equivalent:
 - (1) T is an isometry.
 - (2) $\langle T(x), T(y) \rangle = \langle x, y \rangle$ for all $x, y \in V$.
 - (3) $T^{-1} = T^*$.
- 3. (Polar Decomposition) A linear operator $T: V \to V$ is called *positive* if $\langle T(v), v \rangle \ge 0$ for all $v \in V$. An operator S is called a square root of T if $S^2 = T$.
 - (a) Prove the following statements are equivalent:
 - (1) T is positive.
 - (2) T is self-adjoint with non-negative eigenvalues.
 - (3) T has a positive square root.
 - (b) Prove that a positive operator has a unique *positive* square root.

We will let \sqrt{T} denote the unique positive square root of T. Our goal is to prove the following:

Theorem. Let T be a linear operator on V. Then there is an isometry S such that $T = S\sqrt{T^*T}$.

This is an analogue of polar coordinates for linear operators: every operator T can be decomposed into a "scaling" portion given by $\sqrt{T^*T}$ and a "rotation" given by the isometry S. The proof is broken up as follows:

- (c) Prove that $||T(v)|| = ||\sqrt{T^*T(v)}||$.
- (d) Define a map $S_1 : \operatorname{Im}(\sqrt{T^*T}) \to \operatorname{Im}(T)$ defined by $S_1(\sqrt{T^*T}(v)) = T(v)$. Prove that S_1 is well-defined, and linear.
- (e) Deduce that S_1 is an isomorphism, so that $\operatorname{Im}(\sqrt{T^*T}) \cong \operatorname{Im}(T)$.
- (f) Find a linear operator $S: V \to V$ such that $S|_{\operatorname{Im}(\sqrt{T^*T})} = S_1$.
- (g) Prove that S is an isometry, and that $T = S\sqrt{T^*T}$, proving the theorem.