
Midterm 1 Practice
Tim Smits

Unless otherwise stated, V is a finite dimensional vector space over an arbitrary field F of dimension
n.

1. For the following statements, indicate if it is true or false. If it is true, provide a proof and if
it is false, justify why.

(a) If U1, U2,W are subspaces of V such that U1 +W = U2 +W , then U1 = U2.

(b) W = {A ∈Mn(F ) : AB = BA} is a subspace of Mn(F ), where B ∈Mn(F ) is fixed.

(c) There is a linear transformation T : F 5 → F 2 with ker(T ) = {(x1, x2, x3, x4, x5) ∈ F 5 :
x1 = x2 and x3 = x4 = x5}.

2. Give an example of the following concepts, with a brief justification.

(a) A linear transformation T : R5 → R5 with dim(ker(T )) = 3 and dim(Im(T )) = 2.

(b) A linear transformation T : P (R)→ P (R) that is surjective but not injective.

(c) A basis of R3 with all basis vectors having entries 1 or −1.

3. Prove that {5, t3 + t2 + 1, t3 + t2 + t, t3 + t+ 2} is a basis of P3(R).

4. Let T : R3 → R2 be given by T (x, y, z) = (x+ y + 3z,−2x+ 5y + z).

(a) Prove that T is a linear transformation.

(b) Find bases for ker(T ) and Im(T ), clearly stating their dimensions.

5. Let U = {f ∈ F(R,R) : f(x) = f(−x) for all x ∈ R}, and W = {f ∈ F(R,R) : f(x) =
−f(x) for all x ∈ R}, the subspaces of even and odd functions. Prove that F(R,R) = U ⊕W .

6. Let T : V → V be a linear transformation such that rank(T 2) = rank(T ), where T 2 means
the composition T ◦ T .

(a) Show that Im(T ) ∩ ker(T ) = {0}, and that V = Im(T )⊕ ker(T ).

(b) Suppose instead that T 2 = T , and that V is not necessarily finite dimensional. Prove
that V = Im(T )⊕ ker(T ).

7*. Let F ⊂ L be a subfield, and let L ⊂ K be a subfield. Suppose that L has dimension n as an
F -vector space, and K has dimension m as an L-vector space. Prove K has dimension mn as
an F -vector space.
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1. (a) False; Take V = R2, U1 = Span({(1, 0)}), U2 = Span({(0, 1)}) and W = Span({(1, 1)}).
Then U1 +W = U2 +W = R2 but U1 6= U2.

(b) True; B0 = 0B = 0 so 0 ∈W . If A,C ∈W then (A+ C)B = AB + CB = BA+BC =
B(A+C) so A+B ∈W . For c ∈ F , (cA)B = c(AB) = c(BA) = B(cA), giving cA ∈W .

(c) False; by the dimension theorem dim(ker(T )) + dim(Im(T )) = 5, and we see ker(T ) has
dimension 2, so dim(Im(T )) = 3. However Im(T ) ⊂ F 2 so dim(Im(T )) ≤ 2, so this is
impossible.

2. (a) Take T (x1, x2, x3, x4, x5) = (x1, x2, 0, 0, 0). Basis vectors of Im(T ) are (1, 0, 0, 0, 0) and
(0, 1, 0, 0, 0) so dim(Im(T )) = 2 and the dimension theorem says dim(ker(T )) = 3.

(b) Let T = d
dx be the derivative map. This is not injective, because T (c) = 0 for any

constant polynomial c, so ker(T ) 6= {0}. However T is surjective, because given p ∈ P (R)
then q =

∫ x

0
p(t) dt ∈ P (R) satisfies T (q) = p.

(c) B = {(1, 1, 1), (1,−1, 1), (−1,−1, 1)} works. It’s easy to see (−1,−1, 1) 6∈ Span({(1, 1, 1), (1,−1, 1)})
and the latter is linearly independent, so this is a 3 element linearly independent subset
of R3 and therefore a basis.

3. It’s sufficient to check Span({5, t3 + t2 + 1, t3 + t2 + t, t3 + t+ 2}) = Span({1, t, t2, t3}), since
then we have a 4 element spanning set in a 4 dimensional space and therefore must be a
basis. Set e1 = 5, e2 = t3 + t2 + 1, e3 = t3 + t2 + t, and e4 = t3 + t + 2. Then 1 = 1

5e1,
t = e3−e2+ 1

5e1, t2 = e3−e4+ 2
5e1, and then this gives t3 = e2−(e3−e4+ 2

5e1)− 1
5e1. This says

1, t, t2, t3 ∈ Span({5, t3+t2+1, t3+t2+t, t3+t+2}) so Span({5, t3+t2+1, t3+t2+t, t3+t+2}) =
Span({1, t, t2, t3}).

4. (a) Set ~x = (x1, y1, z1) and ~y = (x2, y2, z2). Then ~x + ~y = (x1 + x2, y1 + y2, z1 + z2),
and T (~x + ~y) = (x1 + x2 + y1 + y2 + 3z1 + 3z2,−2x1 − 2x2 + 5y1 + 5y2 + z1 + z2) =
(x1 + y1 + 3z1,−2x1 + 5y1 + z1) + (x2 + y2 + 3z2,−2x2 + 5y2 + z2) = T (~x) + T (~y).
For c ∈ R, c~x = (cx1, cy1, cz1) so T (c~x) = (cx1 + cy1 + 3cz1,−2cx1 + 5cy1 + cz1) =
c(x1 + y1 + 3z1,−2x1 + 5y1 + z1) = cT (~x) and thus T is linear.

(b) If T (x, y, z) = (0, 0) this says x+y+3z = 0 and −2x+5y+z = 0. Solving gives y = −z,
and x = −2z, so ker(T ) = Span({(−2,−1, 1)}) is 1 dimensional with basis {(−2,−1, 1)}.
The dimension theorem says 3 = dim(ker(T )) + dim(Im(T )), so dim(Im(T )) = 2 and
therefore Im(T ) = R2, so a basis is {(1, 0), (0, 1)}.

5. For f ∈ F(R,R) write f(x) = 1
2 (f(x) + f(−x)) + 1

2 (f(x) − f(−x)). The former is an even
function while the latter is an odd function, so F(R,R) = U +W . If f is both even and odd,
f(x) = f(−x) = −f(x) for all x, i.e. f(x) = 0, so U ∩W = {0} and the sum is direct.

6. (a) If x ∈ Im(T ) ∩ ker(T ), then x = T (y) for some y and 0 = T (x) = T 2(y), so y ∈ ker(T 2).
By the dimension theorem, dim(ker(T )) = dim(ker(T 2)), so because ker(T ) ⊂ ker(T 2)
this says ker(T 2) = ker(T ), i.e. y ∈ ker(T ) so x = T (y) = 0. By HW3.5, dim(Im(T ) +
ker(T )) = dim(Im(T ))+dim(ker(T ))−dim(Im(T )∩ker(T )) = n−0 = n by the dimension
theorem and the above, so Im(T ) + ker(T ) = V and therefore V = Im(T )⊕ ker(T ).

(b) For v ∈ V , we have v = T (v)+(v−T (v)) where v−T (v) ∈ ker(T ) because T (v−T (v)) =
T (v)− T 2(v) = 0. This says V = Im(T ) + ker(T ). If x ∈ Im(T )∩ ker(T ), then x = T (y)
for some y and T (x) = 0, so 0 = T (x) = T 2(y) = T (y) = x, and therefore the sum is
direct.

7. Let {e1, · · · , en} be an F -basis of L, and {f1, · · · , fm} be a L-basis of K. Then S = {eifj} is an
F -basis of L. Suppose that

∑m
j=1

∑n
i=1 cijeifj = 0, where cij ∈ F . Then

∑m
j=1

∑n
i=1 cijeifj =∑m

j=1 βjfj = 0 where βj =
∑n

i=1 cijei ∈ L. Since the fj are a basis of K as an L-vector

space, each βj = 0, so
∑n

i=1 cijei = 0 for all j. But then the ei form a basis of L as an
F -vector space, so cij = 0 for all i, j, showing S is linearly independent. If x ∈ K, write
x =

∑m
j=1 ajfj where aj ∈ L. Since aj ∈ L, write aj =

∑n
i=1 cijei for some cij ∈ F . This says

x =
∑m

j=1 ajfj =
∑m

j=1

∑n
i=1 cijeifj ∈ Span(S). This shows S is a basis of mn elements.
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