
Discussion problems
Tim Smits

Unless otherwise stated, V is a finite dimensional vector space over an arbitrary field F of dimension
n. The letter T will always denote a linear transformation.

1. Prove there do not exist A,B ∈Mn(F ) such that AB −BA = In.

Solution. Suppose to the contrary, that there are A,B such that AB − BA = In. Taking
traces says 0 = tr(AB −BA) = tr(In) = n, a contradiction. Therefore no such A,B exist.

2. Suppose T : V → W is a surjection. Prove there is U ⊂ V such that T |U : U → W is an
isomorphism.

Solution. Pick a basis w1, . . . , wk of W . By assumption, there are vectors v1, . . . , vk such
that T (vi) = wi. Suppose that c1v1 + . . . + ckvk = 0. Then c1T (v1) + . . . + ckT (vk) =
c1w1 + . . .+ ckwk = 0, so all ci = 0 by linear independence of the wi so {v1, . . . , vk} is linearly
independent. Set U = Span{v1, . . . , vk}. Then T |U (vi) = wi maps a basis of U to a basis of
W , and since U and W have the same dimension this says T |U is an isomorphism.

3. Let T : V → V . Show there is n such that ker(Tn) = ker(Tn+1).

Solution. Suppose otherwise, that no such n exists. Since ker(T i) ⊂ ker(T i+1) for all i, we
get a chain of subspace ker(T ) ( ker(T 2) ( . . .. Since the containment at each stage is proper,
this says dim ker(T i) < dim ker(T i+1) for all i. Since V is finite dimensional, there is some k
such that dim ker(T k) = n, i.e. T k = 0, but then T k+1 = 0 so that ker(T k) = ker(T k+1), a
contradiction.

4. Let T : V → V be such that T 2 = 0. Show that 2 · rank(T ) ≤ n.

Solution. By rank-nullity, n = rank(T ) + dim ker(T ). Since T 2 = 0, if y ∈ Im(T ) then y =
T (x) for some x so T (y) = T 2(x) = 0. This says Im(T ) ⊂ ker(T ), so rank(T ) ≤ dim ker(T ).
This then gives n = rank(T ) + dim ker(T ) ≥ rank(T ) + rank(T ) = 2 · rank(T ) as desired.

5. Let T, S : V → V . Prove that rank(ST ) ≤ min{rank(S), rank(T )}.
Solution. If y ∈ Im(ST ), then y = (ST )(x) = S(T (x)) for some x ∈ V , so Im(ST ) ⊂ Im(S)
gives rank(ST ) ≤ rank(S). If x ∈ ker(T ), then (ST )(x) = S(T (x)) = 0, so ker(T ) ⊂
ker(ST ) gives dim ker(T ) ≤ dim ker(ST ). By rank-nullity, n = rank(ST ) + dim ker(ST ) gives
rank(ST ) = n− dim ker(ST ) ≤ n− dim ker(T ) = rank(T ), so rank(ST ) ≤ rank(T ) so we are
done.

6. Let T1, T2 : V → V . Show that ker(T1) = ker(T2) if and only if there exists S : V → V
invertible such that T1 = ST2.

Solution. Suppose that T1 = ST2 for some invertible S. If x ∈ ker(T1), then (ST2)(x) = 0,
so composing with S−1 on the left says T2(x) = 0, so x ∈ ker(T2). Similarly if x ∈
ker(T2), then (ST2)(x) = T1(x) = 0, so x ∈ ker(T1) gives ker(T1) = ker(T2). Now sup-
pose that ker(T1) = ker(T2) = W . Let v1, . . . , vk be a basis of W . Extend to a ba-
sis v1, . . . , vk, w1, . . . , wm. Then T1(w1), . . . , T1(wm) and T2(w1), . . . , T2(wm) must be lin-
early independent: if c1Tj(w1) + . . . + cmTj(wm) = 0, this says c1w1 + . . . + cmwm ∈
ker(Tj) so c1w1 + . . . + cmwm = d1v1 + . . . + dkvk for some di. Subtracting then forces
all ci = di = 0. Extend T1(w1), . . . , T1(wm) to a basis T1(w1), . . . , T1(wm), e1, . . . , ek of V
and T2(w1), . . . , T2(wm) to a basis T2(w1), . . . , T2(wm), e′1, . . . , e

′
k. Define S : V → V by

S(T2(wi)) = T1(wi) and S(ei) = e′i. Then S maps a basis of V to a basis of V so S is
invertible. We have (ST2)(wi) = T1(wi) and (ST2)(vi) = 0 = T1(vi), so ST2 and T1 agree on
a basis of V and therefore are equal.
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7. Let T : V → V satisfy Tn = 0 but Tn−1 6= 0. Let v ∈ V be such that Tn−1(v) 6= 0.

(a) Prove that β = {Tn−1(v), Tn−2(v), . . . , v} is a basis of V , and compute [T ]β .

Solution. Suppose c1T
n−1(v) + . . . + cnv = 0. Applying Tn−1 to both sides shows

cnT
n−1(v) = 0, so cn = 0. Applying Tn−2 to both sides shows cn−1T

n−1(v) = 0, so
cn−1 = 0. Repeating this argument shows that ci = 0 for all i, so β is a basis of V . We

then see that [T ]β =


0 1 0 · · · 0
0 0 1 . . . 0
...

...
...

...
...

0 0 0 0 1
0 0 0 0 0

.

(b) Find A ∈M3(R) such that A2 6= 0 but A3 = 0.

Solution. Take A =

0 1 0
0 0 1
0 0 0

.

8. Compute the number of invertible matrices A in Mn(Fq) where Fq is a finite field of size q.

Solution. Let A ∈Mn(Fq) be invertible. A matrix is invertible if and only if its columns are
linearly independent, so we will count the number of such matrices. There are qn−1 non-zero
vectors in Fnq , so there are qn − 1 ways to pick the first column v1 of A. The second column
cannot be any of the q multiples of v1, so there are qn− q ways to pick the second column v2.
The third column cannot be one of the q2 linear combinations of v1 and v2, so there are qn−q2
ways to pick v3. Continuing this, we see there are (qn − 1)(qn − q) · · · (qn − qn−1) possible
ways to pick columns v1, . . . , vn, and therefore this is the number of invertible matrices.
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