Chapter 2 challenge problems Tim Smits

Unless otherwise stated, V is a finite dimensional vector space over an arbitrary field F of dimension n.

- 1. For the following statements, indicate if it is true or false. If it is true, provide a proof and if it is false, justify why.
 - (a) Let $T: F^8 \to F^5$ be a linear transformation such that ker(T) is 3-dimensional. Then T is surjective.
 - (b) The vector spaces $\operatorname{Sym}_3(\mathbb{R})$ (symmetric 3×3 matrices) and $W = \begin{cases} X \in M_2(\mathbb{R}) : \\ (1 2) \end{pmatrix}$

 $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} X = X \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ are isomorphic.

- (c) Let V be a vector space (potentially infinite dimensional). If $S, T : V \to V$ are linear and $ST = id_V$, then $S = T^{-1}$.
- 2. Give an example of the following concepts, with a brief justification.
 - (a) A linear transformation $T: P_3(F) \to P_3(F)$ with Im(T) = ker(T).
 - (b) A matrix $A \neq I_2 \in M_2(\mathbb{R})$ with $A^5 = I_2$.
- 4. Let $A, B \in M_n(F)$. Recall that A is similar to B if $A = PBP^{-1}$ for some invertible $P \in M_n(F)$.
 - (a) Prove that if A is similar to B, then rank(A) = rank(B).
 - (b) Suppose that $A^2 = A$, $B^2 = B$, and $I_n (A + B)$ is invertible. Prove that rank(A) = rank(B).
 - (c) If AB BA = A, prove that A is not invertible. (Hint: use properties of trace).
- 5. Let $S, T: V \to V$ be linear transformations.
 - (a) Prove that $\dim(\ker(ST)) \le \dim(\ker(S)) + \dim(\ker(T))$.
 - (b) (Sylvester's rank inequality) Prove that $\operatorname{rank}(S) + \operatorname{rank}(T) \le \operatorname{rank}(ST) + n$.
- 6. Let $T: V \to V$ be a linear transformation.
 - (a) Show that if v and T(v) are linearly dependent for all $v \in V$, then $T = c \cdot id_V$ for some $c \in F$.
 - (b) Suppose that TS = ST for all $S \in \operatorname{Hom}_F(V, V)$. Prove that $T = c \cdot \operatorname{id}_V$ for some $c \in F$.
- 7*. Let $T: V \to V$ be linear and let $W \subset V$ be a *T*-invariant subspace, i.e. a subspace with $T(W) \subset W$. *W* is called *T*-*irreducible* if the only *T*-invariant subspaces of *W* are $\{0\}$ and *W*. Prove that if *W* is *T*-irreducible and $\varphi \in \operatorname{Hom}_F(W, W)$ satisfies $\varphi T = T\varphi$, then $\varphi = 0$ or φ is an isomorphism.
- 8*. A matrix $A \in M_n(F)$ is called *nilpotent* if there exists k such that $A^k = 0$. Prove that if A is nilpotent then $I_n A$ is invertible. (Hint: think about the power series of $(1 x)^{-1}$).
- 9.* Let $W \subset V$ be a subspace. The annihilator W° of W is defined by $W^{\circ} = \{T \in \operatorname{Hom}_{F}(V, F) : T(x) = 0 \text{ for all } x \in W\}$. Prove that $n = \dim(W) + \dim(W^{\circ})$. (Hint: find a basis of W°)