
A PROOF THAT EVERY VECTOR SPACE HAS A BASIS
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In lecture, you saw that every vector space that can be spanned by a finite number of
vectors has a basis. It turns out that more is true: any vector space (spanned by a finite
number of elements or not) has a basis. The goal of this handout is to prove this theorem,
which is one of the most important results in linear algebra.

In order to deal with infinite spanning sets, we need some set theory:

Definition 0.1. A partial ordering on a set S is a binary relation ≤ that satisfies the
following conditions for all a, b, c ∈ P :

1. (Reflexivity) a ≤ a.
2. (Anti-symmetry) If a ≤ b and b ≤ a then a = b.
3. (Transitivity) If a ≤ b and b ≤ c then a ≤ c.

Definition 0.2. A poset is a set P with a partial ordering ≤. A poset is called totally
ordered if for all pairs of elements a, b ∈ P , either a ≤ b or b ≤ a. A chain C of a poset P
is a totally ordered subset of P . For A ⊂ P , an upper bound of A is an element m of P
such that x ≤ m for all x ∈ A.

Example 0.3. Let P = R and let ≤ be the usual relation of less than or equal to. Then P
is a poset, and P is totally ordered.

Example 0.4. Let P = N and let a ≤ b ⇐⇒ a | b. This makes P a poset. Under this
ordering, we have 3 ≤ 6, but 3 and 5 are not comparable, so P is not totally ordered. The
set P ′ = {1, 2, 4, 8, 16} is totally ordered, so it is a chain in P . The element 16 is an upper
bound of P ′.

Example 0.5. Let P a set of subsets of a vector space V , and ≤ be ordering by inclusion,
i.e. W ≤ W ′ ⇐⇒ W ⊂ W ′. Then P is a poset.

The proof that every vector space has a basis is one of many non-constructive existence
results in mathematics that follow from Zorn’s lemma, which is (surprisingly!) equivalent to
the Axiom of Choice:

Theorem 0.6 (Zorn’s lemma). Let P be a poset such that every chain in P has an upper
bound in P . Then P has a maxmimal element with respect to ≤. That is, there is an element
m ∈ P such that x ≤ m for all x ∈ P .

We are now ready to prove the theorem:

Theorem 0.7. Every vector space has a basis.

Proof. Let V be a vector space over some field F . The idea of the proof is as follows: use
Zorn’s lemma to show that V contains a maximal linearly independent subset B of V (in
the sense that there is no linearly independent subset S with B ( S), and then show that
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B must be a basis of V .

If V = {0}, then by definition V = Span(∅), and the empty set is linearly independent.
Now suppose that V 6= {0} and let P = {S ⊂ V : S is linearly independent} be the set of
all linearly independent subset of V with an ordering on P given by inclusion. Then P 6= ∅,
because there exists v 6= 0 ∈ V so {v} is a linearly independent subset of V . We now check
the conditions of Zorn’s lemma. Suppose that C ⊂ P is a chain, and write C = {Sα}α∈I
for some indexing set I. Set M =

⋃
α∈I Sα. The claim is that M is an upper bound of C

that is an element of P . The first statement is immediate by definition: for any Sα ∈ C,
we have Sα ⊂

⋃
α∈I Sα, so C ≤ M . Therefore, we only need to check that M is a linearly

independent subset of V , so that M ∈ P , letting Zorn’s lemma kicks in.

Suppose that M is not linearly independent, then there are vectors s1, . . . , sn where
si ∈ Sαi

for some Sαi
and scalars c1, . . . , cn ∈ F not all 0 such that c1s1 + · · · cnsn = 0.

As C is totally ordered, one of the sets Sα1 , . . . , Sαn must contain the others, so each of the
vectors si live in some common set, which we denote Sα. This says there is a non-trivial
dependence relation among vectors in Sα, contradicting that Sα is linearly independent (be-
cause Sα lives in P !). Therefore, M is a linearly independent subset of V . By Zorn’s lemma,
P contains a maximal element with respect to inclusion, say B.

To finish up, we need to show that B spans V . Suppose otherwise, then there is some
v ∈ V such that v 6∈ Span(B). This says that B ∪ {v} is a linearly independent subset of
V with B ⊂ B ∪ {v}, contradicting the maximality of B. Therefore B spans V , and we are
done. �

It’s important to note that the proof only shows that a basis exists – it gives absolutely
zero indication of what one is. The proof technique of using Zorn’s lemma is a rather stan-
dard one for proving existence theorems in mathematics (especially in algebra) and is worth
understanding.

For vector spaces spanned by finite sets, you saw in lecture that it’s not too hard to show
that any two bases have the same number of elements. This allows us to define the dimension
of a vector space. What happens if the vector space has a basis of infinitely many elements?
The dimension of a vector space is still well defined, but this now becomes a fairly non-trivial
result. Instead of talking about the number of elements in a basis, we have to talk about the
cardinality of the basis, and if you know anything about set theory, there are many different
“sizes” of infinite sets which is what causes complications. The proof is a rather technical
set theoretic argument that is unenlightening, so we will take it for granted.

Proposition 1. Let B and B′ be two bases of a vector space V . Then |B| = |B′|.

This gives us the following definition that works for any vector space:

Definition 0.8. Let V be a vector space. The dimension of V is defined as the cardinality
of a basis of V . V is said to be infinite dimensional if it’s dimension is not finite.

If you’re familiar with the notion of countability, the following are examples of infinite
vector spaces of different “sizes”:
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Example 0.9. The vector space Q[x] is infinite dimensional as a Q-vector space, because
the span of any finite set of polynomials has bounded degree. The set {1, x, x2, . . .} is a basis
of Q[x] as a Q-vector space, and so Q[x] has countable dimension.

Example 0.10. R is infinite dimensional as a Q-vector space, because any finite dimensional
vector space over Q must be countable, and R is not countable. It turns out that R has
uncountable dimension as a Q-vector space (but this is much harder to show).


