
VECTOR SPACES

TIM SMITS

Linear algebra arose out of trying to solve systems of linear equations. In a first course,
one learns the proper way to think about solutions to a system of n linear equations in n
variables is by viewing them as solutions to a certain matrix equation of the form Ax = b
in Rn, and then develops the necessary theory of matrices and tools needed to solve these
equations. The goal of abstract linear algebra is to capture the special properties of Rn and
of matrices that made the theory useful in the first place, and expand it to work in larger
settings. This will lead to the abstract definitions of vector spaces and linear transformations,
which will be the main objects of study for us.

definitions and examples

Definition 0.1. A vector space V over a field F is a set V with an addition operation +
and scalar multiplication operation · by elements of F that sasify the following axioms:

1. For all x, y ∈ V , x + y = y + x.
2. For all x, y, z ∈ V , (x + y) + z = x + (y + z).
3. There exists 0 ∈ V such that x + 0 = x for all x ∈ V .
4. For all x ∈ V , there exists −x ∈ V such that x + (−x) = 0.
5. For all x ∈ V , 1 · x = x.
6. For all a, b ∈ F and x ∈ V , (a + b) · x = a · x + b · x.
7. For all a, b ∈ F and x ∈ V , (ab) · x = a · (b · x).
8. For all a ∈ F and x, y ∈ V , a · (x + y) = a · x + a · y.

The elements of V are called vectors, and it is understood that we write cx to mean c · x.

From the axioms above, one can deduce the usual algebraic rules are true in vector spaces:

Proposition 1. Let V be a vector space. For x, y, z ∈ V , and a ∈ F , the following hold:

1. If x + y = x + z, then y = z.
2. The vectors 0 and −x are unique.
3. 0 · x = a · 0 = 0.
4. (−a)x = −(ax).

The proofs of the above all follow quickly from the vector space and field axioms, and are
left as an exercise.

Definition 0.2. For a vector space V and W ⊂ V , we call W a subspace of V if W is
vector space under the same operations as in V .

Proposition 2 (Subspace criterion). Let V be a vector space. Then W ⊂ V is a subspace
⇐⇒ 0 ∈ W , and W is closed under addition and scalar multiplication.

Proof. The forward direction is immediate by definition of a vector space. Conversely, if W
is closed under addition and scalar multiplication, since vectors in W are vectors in V , this
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immediately gives axioms 1, 2, 5, 6, 7, 8. Since 0 ∈ W , 3 is satisfied, and since W is closed
under scalar multiplication (−1)x = −x ∈ W so 4 is satisfied. �

Example 0.3. Any field F is a vector space over itself. More generally, F n is an F -vector
space for any n with operations of addition and scalar multiplication performed componen-
twise, where F n = {(a1, . . . , an) : ai ∈ F} is the set of all n-tuples with entries in F .

Example 0.4. Let F ⊂ L be a subfield. Then L is an L-vector space because L is a field,
but L is also an F -vector space, with scalar multiplication by an element of F given by
performing the multiplication in L, and addition also performed in L.

Example 0.5. Mn(F ), the set of n × n matrices with entries in a field F , is an F -vector
space, with addition and scalar multiplication done entrywise.

Example 0.6. Let S be a non-empty set, then the set of all functions from S to F , denoted
F(S, F ), is an F -vector space. A vector in F(S, F ) is a function f : S → F , and two vectors
f, g are equal if f(s) = g(s) for all s ∈ S. The operations are given by (f+g)(s) = f(s)+g(s)
and (cf)(s) = cf(s).

Example 0.7. The set of polynomials of degree at most n with coefficients in F , Pn(F ), is
a subspace of F(F, F ).

Example 0.8. Let C([a, b]) be the set of continuous functions from [a, b] to R, and let
C∞([a, b]) be the subset of all infinitely differentiable functions. Then both C([a, b]) and
C∞([a, b]) are subspaces of F(R,R), and C∞([a, b]) is a subspace of C([a, b]). Let V = {f ∈
C∞([a, b]) : f ′ = f}. Then V is a subspace of C∞([a, b]). This gives a connection between
studying solutions to differential equations and studying the vector space C∞([a, b]).

Example 0.9. Let S be a set and set V = 2S, the set of all subsets of S. Then V is a vector
space over Z/2Z with addition given by A + B = (A \ B) ∪ (B \ A), scalar multiplication
in the obvious manner, and the 0 element being the empty set. Note the additive inverse of
any set A is itself.

operations on vector spaces

A natural question to ask is what operations can we do on vector spaces to create new
vector spaces? Below are some examples:

Proposition 3. Let V and W be vector spaces. Then V ∩W is a subspace of both V and
W .

Proof. Clearly 0 ∈ W ∩ V . If x, y ∈ V ∩W , then as both V,W are vector spaces x + y lies
in both V and W , so x + y ∈ V ∩W , and similarly for c ∈ F we see cx ∈ V ∩W . �

Proposition 4. Let V and W be vector spaces. Then V ∪W is a vector space ⇐⇒ W ⊂ V
or V ⊂ W .

Proof. The backwards direct is immediate: if W ⊂ V or V ⊂ W , then the union is equal to
either V or W which is a vector space. Conversely, suppose that V ∪W is a subspace and
that W 6⊂ V . Suppose for contradiction that V 6⊂ W . Pick w ∈ W \ V , and v ∈ V \W .
Then both w, v ∈ W ∪ V , so w + v ∈ W ∪ V . If w + v ∈ W , then (w + v)− w = v ∈ W , a
contradiction. Similarly, if w + v ∈ V then w ∈ V , again impossible. Therefore V ⊂ W . A
similar argument shows that if V 6⊂ W then W ⊂ V . �
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The above proposition says that taking unions of vector spaces won’t produce anything
new. However, there is a way to create a vector space that contains copies of both V and
W :

Proposition 5. Let V and W be vector spaces. Then V × W is a vector space with the
operations of componentwise addition and scalar multiplication.

Proof. Exercise. �

The vector space V ×W is sometimes called the external direct sum of V and W and
is commonly denoted V ⊕W . However to avoid confusion with the definition below, we’ll
keep the notation V ×W . There is a way to “add” vector spaces, but only if they are both
subspaces of some common vector space, so that addition of vectors makes sense.

Definition 0.10. Let W1 and W2 be subspace of a vector space V . The sum of W1 and
W2, denoted W1 + W2 is defined as W1 + W2 = {w1 + w2 : w1 ∈ W1, w2 ∈ W2}. Further, if
W1 ∩W2 = {0}, then we call W1 + W2 the interal direct sum of W1 and W2 and denote
this W1 ⊕W2.

The difference between external and interal direct sums is that in the latter case, both
spaces live internally inside a larger vector space to begin with. In an external direct sum, we
create a larger vector space in which copies of V and W can be identified, namely we identify
V with the subspaces {(v, 0) : v ∈ V } = V × {0} and W with {(0, w) : w ∈ W} = {0} ×W .
A sum being internal or external is to be understood by the context, and will just be referred
to as a direct sum.

Proposition 6. For subspaces W1,W2 of a vector space V , W1+W2 (and therefore W1⊕W2)
is a subspace of V .

Proof. It’s clear that 0 ∈ W1 + W2 since 0 ∈ W1 and 0 ∈ W2. If x, y ∈ W1 + W2, then
x = w1 + w2 and y = w′1 + w′2 for w1, w

′
1 ∈ W1 and w2, w

′
2 ∈ W2. Therefore x + y =

(w1 + w′1) + (w2 + w′2) and w1 + w′1 ∈ W ′
1 because W1 is a subspace of V , and w2 + w′2 ∈ W2

for the same reasoning. The proof that W1 + W2 is closed under scalar multiplication is
similar. �

The difference between being a sum of subspaces and a direct sum of subspaces is the
following:

Proposition 7. Suppose V = W1+W2 for some subspaces W1,W2. Then V = W1⊕W2 ⇐⇒
every vector x in V can be written uniquely as x = w1 + w2 for w1 ∈ W1 and w2 ∈ W2.

Proof. If V = W1⊕W2, and x has two different representations as a sum of the above form,
write x = w1 + w2 and x = w′1 + w′2 for some w1, w2, w

′
1, w

′
2 ∈ W . Then w1 − w′1 = w′2 − w2,

and the left hand side lives in W1 while the right hand side lives in W2. This says w1−w′1 ∈
W1 ∩W2 = {0}, so w1 = w′1. Similarly w2 = w′2 so the representation is unique. Conversely,
suppose that any vector x ∈ V can be written uniquely as x = w1 + w2 for some w1 ∈ W1

and w2 ∈ W2. Then clearly, V = W1 + W2. If x ∈ W1 ∩W2, we can write x = x + 0 by
taking w1 = x and w2 = 0. Similarly, we can write x = 0 + x by taking w1 = 0 and w2 = x.
By uniqueness, this says x = 0, so that W1 ∩W2 = {0} says V = W1 ⊕W2. �

Example 0.11. In R2, set X = {(x, y) : y = 0} and Y = {(x, y) : x = 0}. Then R2 = X⊕Y .
Note these subspaces are simply the x and y axes. In R3, set V = {(x, y, z) : z = 0}
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and W = {(x, y, z) : x = 0}. Then R3 = V + W , but the sum is not direct because
V ∩W = {(x, y, z) : x = z = 0}.

Example 0.12. Let F be a field not of characteristic 2, and let Symn(F ), Skewn(F ) ⊂
Mn(F ) be the subspaces of symmetric and skew-symmetric matrices respectively. Then
Mn(F ) = Symn(F ) ⊕ Skewn(F ). Any matrix A ∈ Mn(F ) can be written A = 1

2
(A + At) +

1
2
(A − At), so Mn(F ) = Symn(F ) + Skewn(F ), and if A ∈ Symn(F ) ∩ Skewn(F ), we have

A = At and A = −At so that 2At = 0 says At = 0, so that the sum is direct.

There’s one more common operation on subspaces that we’ll study, although it is quite a
bit more abstract.

Definition 0.13. Let V be a vector space, and W ⊂ V be a subspace. For a vector v ∈ V ,
we define the coset of v, denoted v + W , to be v + W = {v + w : w ∈ W}, the set of
translates of v by elements of W .

Example 0.14. Let V = R2, W = {(x, 0) : x ∈ R}, and v = (0, 1). What set is v + W?
Elements of the coset v+W look like (0, 1) +w for different choices of vectors w ∈ W . Since
an arbitrary w ∈ W looks like (a, 0) for some a ∈ R, such elements look like (a, 1) for some
a ∈ R. For any choice of a the vector (a, 0) is in W , so we see that v+W = {(a, 1) : a ∈ R}.

The point of cosets is that they give us a way of partitioning the vector space V : as an
equality of sets, we have V =

⋃
v∈V

(v + W ). We’ll use these cosets to construct a new vector

space. Let V/W = {v + W : v ∈ V }. We can define addition and scalar multiplication
operations on V/W as follows:

Proposition 8. V/W is a vector space, where the operations are given by (v+W )+(v′+W ) =
(v + v′) + W and c · (v + W ) = c · v + W .

Proof. Exercise. �

Definition 0.15. The set V/W with the operations of addition and scalar multiplication as
given above is known as the quotient space of V by W .

The idea behind the quotient space is that it “crushes” the subspace W to the 0 vector.
This can be seen from the following:

Proposition 9. Two cosets v +W and v′+W are equal in V/W if and only if v− v′ ∈ W .
In particular, v + W = 0 + W in V/W if and only if v ∈ W .

Proof. Exercise. �

Example 0.16. Consider V = R2 and W = {(x, 0) : x ∈ R}, the x-axis. For any vector
v = (a, b), we have that v + W = {(a + x, b) : x ∈ R} is the horizontal line through the
vector v. The quotient space V/W “crushes” each of these horizontal lines to a single point,
namely the intersection of this line with the y-axis: in the quotient space, we have the
equality (a, b) + W = (0, b) + W because (a, b)− (0, b) = (a, 0) ∈ W . We see that points in
V/W can be “identified” with points on the y-axis, so that one can “picture” V/W as the
y-axis.
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linear independence

The above discussion tells us how to create new vector spaces from subspaces of some V .
How can we create subspaces of V ? Starting with S ⊂ V , what is needed to build a vector
space out of elements of S? By definition, such a subspace would have to be closed under
scalar multiplication, so for s ∈ S and c ∈ F it must contain c · s. Similarly, it would need
to be closed under addition, so it needs to contain all possible finite sums of the elements of
the form just mentioned. It turns out, this is enough.

Definition 0.17. A linear combination of vectors v1, . . . , vn is an expression of the form
c1v1 + . . . + cnvn for some ci ∈ F . An equation of the form c1v1 + . . . + cnvn = 0 is called a
linear dependence relation. A dependence relation is called trivial if the only possible
solution is when all ci = 0, and is called non-trivial otherwise.

Definition 0.18. Let S ⊂ V . The span of S denoted Span(S) is the set of all finite linear
combinations of elements of S. That is, Span(S) = {c1v1 + . . .+ cnvn : ci ∈ F, vi ∈ S, n ≥ 1}.

Proposition 10. Let S ⊂ V . Then Span(S) is a subspace of V .

Proof. By convention, if S = ∅ we define Span(S) = {0}. If S 6= ∅, pick v ∈ S. Then
0 = 0 ·v ∈ Span(S). If x, y ∈ Span(S), then x = c1v1 + . . .+ cnvn and y = d1w1 + . . .+dmwm
for some ci, dj ∈ F and vi, wj ∈ S. Then x + y = c1v1 + . . . + cnvn + d1w1 + . . . + dmwm is
a linear combination of the vectors v1, . . . , vn, w1, . . . , wm ∈ S so x+ y ∈ Span(S). Similarly
for c ∈ F we see c · v ∈ Span(S), so Span(S) is a subspace of V . �

Span(S) is sometimes referred to as the subspace generated by S. If V = Span(S), then
we call S a generating set for V . Observe that any subspace of V containing S must
contain Span(S), and therefore Span(S) is the smallest subspace of V containing S.

Example 0.19. In Sym2(F ), any symmetric matrix is of the form

(
a b
b c

)
for some a, b, c ∈

F . We see Sym2(F ) = Span

{(
1 0
0 0

)
,

(
0 1
1 0

)
,

(
0 0
0 1

)}
.

Example 0.20. Let V = R3. Then V = Span{(1, 0, 0), (0, 1, 0), (0, 0, 1)}. We may also write
V = Span{(1, 1, 0), (0, 1, 1), (1, 0, 1)}), or V = Span{(1, 1, 1), (1, 0, 0), (0, 1, 0), (0, 1, 1)}. A
spanning set need not be unique, nor must any spanning set have the same cardinality.

The above example shows that a spanning set may contain “redundant” information. In
the third spanning set above, notice that (1, 1, 1) is already contained in Span{(1, 0, 0), (0, 1, 0), (0, 1, 1)},
so removing it from S does not change Span(S). We give this condition a name:

Definition 0.21. Let V be a vector space. For S ⊂ V , we call S linearly dependent if
there exist v1, . . . , vn ∈ S and c1, . . . , cn ∈ F not all 0 such that c1v1 + . . . + cnvn = 0. S is
called linearly independent if S is not linearly dependent.

If S is linearly dependent, the above says there is a non-trivial linear combination of some
vectors in S that equals 0. Since some coefficient ci must be non-zero, we can solve for vi
in terms of the remaining vectors, so another way of saying this is that some vector vi is
contained in the span of some other vectors.
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Example 0.22. In the above example, the set {(1, 0, 0), (0, 1, 0), (0, 0, 1)} is linearly inde-
pendent. The set {(1, 1, 1), (1, 0, 0), (0, 1, 0), (0, 1, 1)} is linearly dependent.

Example 0.23. In C∞(R), the vectors sin(x) and cos(x) are linearly independent: if
c1 sin(x) + c2 cos(x) = 0 for all x, plugging in x = 0 and x = π

2
shows that c1 = c2 = 0.

Similarly if r 6= s, the functions erx and esx are linearly independent.

Since linear dependence is defined in terms of a finite quantity, an easy definition of linear
independence that handles the case of S being infinite is as follows:

Proposition 11. Let V be a vector space and S ⊂ V . Then S is linearly independent if and
only if all finite subsets of S are linearly independent.

Proof. If S is linearly independent, for any S ′ ⊂ S, a linear dependence relation among
vectors in S ′ is also a linear dependence relation among vectors in S, so it must be trivial.
Conversely, if all finite subsets of S are linearly independent, given any vectors v1, . . . , vn,
if c1v1 + . . . + cnvn = 0, this is a dependence relation among the vectors of the finite set
S ′ = {v1, . . . , vn}, and so must be trivial by assumption. �

Given S ⊂ V , how can we check if S is linearly independent? One way is as follows:

Proposition 12. Let V be a vector space and S = {v1, . . . , vn} for some vi ∈ V . Then
S is linearly dependent if and only if v1 = 0 or there exists 1 ≤ k < n such that vk+1 ∈
Span({v1, . . . , vk}).

Proof. The backwards direction is immediate, so suppose that S is linearly dependent. Then
c1v1 + . . . + cnvn = 0 for some ci not all 0. Set k = max{n : cn 6= 0}, which exists since
some coefficient is non-zero and there are finitely many. Notice that this says ci = 0 for all
k < i ≤ n. If k = 1, this says c1 is the only non-zero coefficient, so c1v1 = 0 gives v1 = 0.
Otherwise, k > 1 so c1v1 + . . . + cnvn = c1v1 + . . . + ckvk = 0. Since ck 6= 0, this says
vk ∈ Span({v1, . . . , vk−1}), so we are done. �

This gives a method of checking if a set is linearly independent that works well for sets
of small size. For example, to check if {v1, v2, v3} is linearly independent one just needs to
check that v2 6∈ Span({v1}) and v3 6∈ Span({v1, v2}). For sets of larger size, we will later
develop more efficient methods. We end the section with an extremely useful proposition.

Proposition 13. Let S ⊂ V be linearly independent and v ∈ V . Then S ∪ {v} is linearly
dependent if and only if v ∈ Span(S).

Proof. If S ∪ {v} is linearly dependent, then there are s1, . . . , sn ∈ S and c1, . . . , cn+1 ∈ F
not all 0 such that c1s1 + . . . + cnsn + cn+1v = 0. Necessarily, cn+1 6= 0 otherwise the linear
independence of S forces all ci = 0. Then solving for v gives v = − 1

cn+1
(c1s1 + . . . + cnsn)

so v ∈ Span(S). Conversely, if v ∈ Span(S) then v = c1s1 + . . . + cnsn for some si ∈ S and
ci 6= 0. Then c1s1 + . . . + cnsn − v = 0 is a non-trivial linear dependence relation among
elements of S ∪ {v}, so S ∪ {v} is linearly dependent. �

Theorem 0.24. Let S ⊂ V be linearly independent. If v 6= 0 ∈ Span(S), then v = c1v1 +
. . . + cnvn for unique distinct vectors vi ∈ S and unique ci 6= 0 ∈ F .

Proof. Suppose that v has two different representations using vectors in S. Write v =
c1s1 + . . . + cnsn and v = d1t1 + . . . + dmtm for some ci, dj 6= 0 ∈ F and si, tj ∈ S, where we
may assume none of the si are the same and none of the tj are the same. Subtracting shows



VECTOR SPACES 7

c1s1 + . . .+ cnsn− d1t1− . . .− dmtm = 0. If {s1, . . . , sn} 6= {t1, . . . , tm}, then there is some i
such that si is not equal to any of tj. Since S is linearly independent, this forces ci = 0, since
there is no other term in the sum that can be grouped with cisi. This is a contradiction, so
n = m and {s1, . . . , sn} = {t1, . . . , tm}. Relabeling as necessary, we may assume that si = ti
so that the above can be written as (c1 − d1)s1 + . . . + (cn − dn)sn = 0, so ci = di for all i
and therefore such a representation is unique. �

bases and dimension

The above theorem is of critical importance: the vectors in Span(S) can then be though
of as tuples of elements of F by reading off the coefficients in the corresponding linear com-
bination. A natural question to ask is if every vector space arises as the spanning set of a
linearly independent subset. The answer is yes, and is the most important result in linear
algebra.

Definition 0.25. A basis of a vector space V is a linearly independent spanning set. The
dimension of V is the cardinality of a basis of V .

Perhaps in more familiar terms, the above says that every vector space has a basis. The
fact that the dimension of a vector space is actually well defined is a fairly non-trivial result,
but the proof is a rather technical set theoretic argument that is unenlightening, so for our
purposes it will be taken for granted.

Proposition 14. Let B and B′ be two bases of a vector space V . Then |B| = |B′|.
Dimension is one of the most useful ideas in linear algebra: it gives us a notion of size for
a vector space, and being able to translate questions about vector spaces into statements
about integers makes them easier to understand. At this stage, linear algebra branches off
in two directions: the study of infinite dimensional vector space, and the study of finite
dimensional vector spaces, the latter of which we will focus the majority of our attention on.

Finite dimensional vector space

Throughout the rest of this section, we will assume that V is an n-dimensional vector space
over a field F unless otherwise stated.

The above proof that every vector space has a basis is non-constructive – it tells us one must
exist but gives us no way of finding one. In the finite dimensional case, we actually have a
constructive method for finding bases of a vector space.

Theorem 0.26. Let S = {v1, . . . , vk} be a subset of V that spans V . Then there is B ⊂ S
such that B is a basis of V .

Proof. We may assume that the vi are non-zero, otherwise remove them. Let m be the
largest integer such that there is an m element subset B of S that is linearly independent.
As {vi} is linearly independent for any i, and S has at most k elements, in particular B must
exist and 1 ≤ m ≤ k. Then Span(S) = Span(B). To see this, we show that vi ∈ Span(B)
for all i. If vi 6∈ B, then B ∪ {vi} is a linearly dependent subset by definition of B, so
there are c1, . . . , cm+1 ∈ F not all 0 such that c1s1 + . . . + cmsm + cm+1vi = 0. By linear
independence of elements of B, necessarily cm+1 6= 0, so we can solve for vi in terms of si,
giving vi ∈ Span(B) as desired. �
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Theorem 0.27. Let S = {v1, . . . vk} be a linearly independent subset of V . Then there exist
vectors w1, . . . , wm ∈ V such that {v1, . . . , vk, w1, . . . , wm} is a basis of V .

Proof. Pick a basis {e1, e2, . . . , en} of V . Then {w1, . . . , wk, e1, . . . , en} is a spanning set.
Remove vectors ei from the above set if ei ∈ Span(S). The remaining vectors w1, . . . , wm not
removed are not contained in Span(S), so the set {v1, . . . , vk, w1, . . . , wm} must be linearly
independent, and it remains a spanning set of V by construction so it is a basis. �

An immediately corollary is the following:

Corollary 0.28. Let W ⊂ V be a subspace. Then there exists W ′ ⊂ V a subspace such that
V = W ⊕W ′.

Proof. Pick a basis {v1, . . . , vk} of W and extend to a basis {v1, . . . , vk, e1, . . . , em} of V . Set
W ′ = Span({e1, . . . , em}). Then it’s clear that V = W + W ′, and W ∩W ′ = {0} because if
x ∈ W ∩W ′, we can write x = c1v1 + . . . + ckvk and x = d1e1 + . . . + dmem for ci, dj ∈ F ,
so c1v1 + . . . + ckvk − d1e1 − . . .− dmem = 0 gives all ci, dj = 0 as these vectors are linearly
independent in V . �

The subspace W ′ is called the complement of W in V .

In linear algebra, it’s not uncommon to be interested in finding a basis with some particular
choices of basis vectors, so the extension result is quite useful. The following is a translation
of the above two results using the language of dimension.

Theorem 0.29. Let S = {v1, . . . , vk}.
1. If S is linearly independent, then k ≤ n.
2. If S spans V , then k ≥ n
3. If k = n, S is linearly independent if and only if S is a spanning set.

Proof. Items 1 and 2 are immediately corollaries of the above two results. To prove 3, If S is
linearly independent and S doesn’t span V , then there is v ∈ V such that S ∪{v} is linearly
independent. But then this says n+1 ≤ n, a contradiction. Therefore S spans V . Conversely,
if S is not linearly independent, we may trim S to a basis B with n = |B| < |S| = n, a
contradiction. �

Example 0.30. In F n, the vectors ei where ei is the vector that is 1 in the i-th coordinate
and 0 elsewhere form a basis. It’s easy to see that if c1e1 + . . . cnen = 0, then (c1, . . . , cn) =
(0, . . . , 0) so ci = 0, and it’s obvious this is a spanning set. This is an n-dimensional F -vector
space.

Example 0.31. In Mn(F ), the matrices Eij where Eij is the matrix with (i, j)-th entry
equal to 1 and 0 elsewhere is a basis – the argument is the same as above. This is an
n2-dimensional F -vector space.

Example 0.32. In Pn(F ), the set {1, x, . . . , xn} is a basis. It’s clear that this is a spanning
set, so it remains to see linear independence. If c0 + c1x + . . . cnx

n = 0 in Pn(F ), then in
particular, this holds true for all x ∈ F . The left hand side is a degree at most n polynomial,
so it has at most n roots, while the right hand side is 0 everywhere. This is only possible if
all coefficients are 0. This is an n + 1-dimensional F -vector space.
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Example 0.33. The space of all polynomials with coefficients in F , P (F ) is infinite dimen-
sional: any finite set of polynomials has a maximal degree m, so their F -span is contained
in Pm(F ). This says no finite subset of P (F ) is a spanning set, so it is infinite dimensional
as an F -vector space.

Example 0.34. In R3, the set {(1, 0, 1), (1, 1, 0), (0, 1, 1)} is a basis, because it is linearly
independent: one can check by hand that (0, 1, 1) 6∈ Span({(1, 0, 1), (1, 1, 0)}).

Example 0.35. Let V = {(x, y, z) ∈ R3 : x− 2y + z = 0 and 2x− 3y + z = 0}. Then V is
a subspace of R3, and has basis {(1, 1, 1)}.

Example 0.36. The dimension of a vector space depends on the underlying field. As a
C-vector space, Cn has dimension n with basis vectors ej for 1 ≤ j ≤ n. However, C is a
2-dimensional R-vector space: any complex number z is of the form z = a + bi for real a, b,
so {1, i} is basis. The vectors ej, iej for 1 ≤ j ≤ n form a basis of Cn as a 2n-dimensional
R-vector space.

Example 0.37. For a 6= 0 ∈ R, the set {1, x−a, (x−a)2, . . . , (x−a)n} is a basis for Pn(R):
if c0 + c1(x− a) + . . . + cn(x− a)n = 0 for all x, plugging in x = a shows c0 = 0, and taking
derivatives and repeating the argument shows ci = 0. This shows linear independence and
since a basis has n+1 elements, this is a spanning set. Every polynomial p(x) can be written
in the form p(x) = c0 + c1(x − a) + . . . + cn(x − a)n. One can solve for the coefficients ci

by taking derivatives as necessary and plugging in x = a, to see ck = p(k)(a)
k!

, recovering the
usual Taylor expansion around x = a.

To illustrate why dimension is useful, we prove a quick result, which helps us understand a
vector space by understanding its subspaces.

Proposition 15. Let W ⊂ V be a subspace. Then dim(W ) ≤ n. If dim(W ) = n, then
W = V .

Proof. First we show that W is finite dimensional. If W = {0}, we are done. Otherwise,
pick w1 6= 0 ∈ W . If W = Span({w1}), we are done, otherwise there is w2 ∈ W with
w2 6∈ Span({w1}), so {w1, w2} is linearly independent. Continue choosing vectors w3, . . . , wk
in this way such that {w1, . . . , wk} is a linearly independent subset of W . Since W ⊂ V , it’s
also a linearly independent subset of V , so this process must stop before the n-th step, and
the termination of this process is equivalent to saying that W = Span({w1, . . . , wk}). This
says {w1, . . . , wk} is a basis of W , and we have k ≤ n. If k = n, these vectors are actually a
basis of V as well, so W = V . �

Example 0.38. Let W ⊂ R3 be a subspace. Then dim(W ) = 0, 1, 2, 3. If dim(W ) = 0,
then W = {0}, and if dim(W ) = 3, then W = R3. If dim(W ) = 1, then W = Span({v})
for some v ∈ W , i.e. W is the line through the origin in the direction of v. If dim(W ) = 2,
we have W = Span({v1, v2}) for some vectors v1, v2. Let v = v1 × v2, so x · v = 0 for all
x ∈ W . This defines the equation of a plane with normal vector v1× v2, so that subspaces of
R3 are either {0}, R3, lines through the origin or planes through the origin. The dimensions
of these objects should hopefully match your own geometric intuition.

Example 0.39. Set V = (Z/pZ)2, which is a 2-dimensional Z/pZ-vector space with basis
vectors (1̄, 0̄) and (0̄, 1̄). What are all the subspaces of V ? If W ⊂ V is a subspace, we
have dim(W ) = 0, 1, 2. If dim(W ) = 0 then W = {0}, and if dim(W ) = 2 then W = V . If
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dim(W ) = 1, then W = Span({v}) for some non-zero vector v. There are a total of p2−1 such
vectors v, and each of the p− 1 non-zero multiples of v span the same subspace of V . Since
the 1-dimensional subspaces of V partition W , we conclude there are (p2−1)/(p−1) = p+1
different 1-dimensional subspaces of V , for a total of p + 3.

We end with some useful dimension counting results:

Proposition 16. Let be V a vector spaces and let W,W1,W2 be subspaces.

(a) dim(W1 + W2) = dim(W1) + dim(W2)− dim(W1 ∩W2).
(b) dim(W1 ⊕W2) = dim(W1) + dim(W2).
(b) dim(V/W ) = dim(V )− dim(W ).

Proof. Exercise. �


