
LINEAR TRANSFORMATIONS

TIM SMITS

A general philosophy is that to study algebraic structures, one needs to not just study
the objects but structure preserving maps between these objects as well. There is no simple
explanation for the latter, but historically it has been very productive. When studying how
to solve systems of linear equations in Rn, one is naturally led to matrix equations of the
form Ax = b. A matrix A defines a function T : Rn → Rn given by T (x) = Ax. This func-
tion T respects the structure of Euclidean space, in the sense that T (x + y) = T (x) + T (y)
and T (cx) = cT (x) for all x, y ∈ Rn and c ∈ R. Since vector spaces are nothing more than
abstracted versions of Euclidean space, we should look at abstract analogues of matrices, i.e.
functions that preserve the vector space structure.

Unless otherwise stated, through the handout V is a finite dimensional vector space of
dimension n over a field F . The letter T will always denote a linear transformation.

basic definitions and examples

Definition 0.1. A linear transformation T : V → W between vector spaces V and W
over a field F is a function satisfying T (x + y) = T (x) + T (y) and T (cx) = cT (x) for all
x, y ∈ V and c ∈ F . If V = W , we sometimes call T a linear operator on V .

Note that necessarily a linear transformation satisfies T (0) = 0. We also see by induction
that for any finite collection of vectors v1, . . . , vn and scalars c1, . . . , cn ∈ F we have T (c1v1 +
. . .+ cnvn) = c1T (v1) + . . .+ cnT (vn).

Definition 0.2. The kernel ker(T ) is defined by ker(T ) = {x ∈ V : T (x) = 0}. The image
Im(T ) is defined by Im(T ) = {T (x) : x ∈ V }.

The image and kernel of T are two important subspace of V and W respectively, and we
can translate set theoretic statements about injectivity and surjectivity into the language of
linear algebra.

Proposition 1. Let T : V → W be linear. Then ker(T ) is a subspace of V and Im(T ) is a
subspace of W .

Proof. Since T is linear, we have T (0) = T (0 + 0) = T (0) + T (0), so 0 = T (0) gives
0 ∈ ker(T ). If x, y ∈ ker(T ) then T (x + y) = T (x) + T (y) = 0 by linearity. Similarly, if
c ∈ F , T (cx) = cT (x) = 0 so cx ∈ ker(T ) giving ker(T ) is a subspace of V . Since T (0) = 0,
this says 0 ∈ Im(W ). If x, y ∈ Im(W ) then there are u, v ∈ V such that x = T (u) and
y = T (v). Then x+ y = T (u) +T (v) = T (u+ v) so x+ y ∈ Im(T ). Finally, if x = T (u) then
cx = cT (u) = T (cu) so cx ∈ Im(T ) which says Im(T ) is a subspace of W . �

Proposition 2. Let T : V → W be linear.

(a) T is injective if and only if ker(T ) = {0}.
(b) T is surjective if and only if Im(T ) = W .
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Proof.

(a) Suppose that T is injective. If x ∈ ker(T ), then T (x) = T (0) so injectivity says
x = 0 giving ker(T ) = {0}. If ker(T ) = {0}, if T (x) = T (y) then T (x − y) = 0 says
x− y ∈ ker(T ) so x− y = 0, i.e. x = y so T is injective.

(b) If T is surjective, then for every y ∈ W there is x ∈ V such that T (x) = w, which is
precisely the same as saying W = Im(T ). On the other hand, if W = Im(T ) then for
all w ∈ W there is x ∈ V with w = T (x), so T is surjective.

�

Example 0.3. For any vector space V , the identity transformation idV : V → V given
by idV (x) = x is linear.

Example 0.4. For any field F and a ∈ F , the map T : F → F given by T (x) = ax is a
linear transformation by the field axioms.

Example 0.5. The map T : R2 → R3 given by T (x, y) = (x + y, y, x − y) is a linear
transformation.

Example 0.6. For any matrix A ∈ Mm×n(F ), the map T : F n → Fm given by T (x) = Ax
is a linear transformation, since A(x + y) = Ax + Ay and A(cx) = c(Ax) by how matrices
work.

Example 0.7. In P (R), the maps D(p)(x) = p′(x) and I(p)(x) =
∫ x
0
p(t) dt are linear

operators on P (R) by calculus. D is not injective, because any constant polynomial has
derivative 0, but D is surjective since D(

∫ x
0
p(t) dt) = p(x) by the fundamental theorem

of calculus. The operator I is injective but not surjective because nothing maps to the
polynomial p(x) = 1.

Example 0.8. The map D : C∞([0, 1]) → C∞([0, 1]) given by D(f)(x) = f(x) − f ′(x) is
a linear transformation. Saying f ∈ ker(D) is the same as saying f ′(x) = f(x), so ker(D)
is precisely the set of functions that satisfy the differential equation f = f ′. From calculus,
we know the only such functions are of the form cex for c ∈ R, so ker(D) = Span({ex}) is a
1-dimensional subspace of C∞([0, 1]).

Example 0.9. The map T : Mn(F ) → Mn(F ) given by T (A) = A − At is linear. ker(T )
is the set of matrices with A = At, i.e. ker(T ) = Symn(F ). Any matrix in Im(T ) is of the
form A − At for some A, which is skew-symmetric, so Im(T ) ⊂ Skewn(F ). If F does not
have characteristic 2, for any skew-symmetric matrix B, we have T (B) = B − Bt = 2B, so
T (1

2
B) = B says Im(T ) = Skewn(F ).

Example 0.10. Let F∞ be the sequence space of elements of F . That is, F∞ = {(a1, a2, . . .) :
ai ∈ F}. Define maps R : F∞ → F∞ by R((a1, a2, . . .)) = (a2, a3, . . .) and L((a1, a2, . . .)) =
(0, a1, a2, . . .), the right and left shift operators respectively. Then both R and L are linear
operators on F∞.

Example 0.11. Let W ⊂ V be a subspace. The map π : V → V/W given by T (v) = v+W
is a linear transformation, called the quotient map.

Example 0.12. Suppose V = W ⊕U for some subspaces W,U of V . The projection πW of
V onto W along U is defined by πW (x) = w where x = w+ u for unique w ∈ W and u ∈ U .
Then πW is linear, and ker(πW ) = U and Im(πW ) = W . If we assume V is finite dimensional,
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for any subspace W there is U such that V = W ⊕ U . This then says that any subspace W
is the kernel of some linear transformation, namely πU where U is the complement of W in
V . Similarly, W appears as the image of πW .

A natural question is given a linear operator T : V → V and a subspace W of V , when
does T restrict to a linear operator on W? Necessarily, if T restricts to an operator on W
we must have T (W ) ⊂ W , and actually this is sufficient: if T (W ) ⊂ W , then for x, y ∈ W
we have T (x+ y) = T (x) + T (y) since x, y ∈ V and T (cx) = cT (x) for c ∈ F . We give such
subspaces a name:

Definition 0.13. Given a linear operator T : V → V , a subspace W ⊂ V is called T-
invariant if T (W ) ⊂ W . The restriction of T to W , denoted by T |W , is the linear transfor-
mation T |W (x) = T (x) for all x ∈ W .

Example 0.14. Let V = W ⊕ U , and consider πW . Then W is πW -invariant, and πW |W is
the identity map on W .

Example 0.15. The map T : Mn(F ) → Mn(F ) given by T (A) = A − At is Symn(F )-
invariant. The restriction T |Symn(F ) is simply the 0 map.

Dimension counting

The image and kernel of a linear transformation T are extremely important because they
give rise to a powerful dimension counting result. We’ll illustrate how we can use such
counting arguments to get useful results.

Definition 0.16. The rank of a linear transformation T : V → W , denoted by rank(T ) is
defined as rank(T ) = dim(Im(T )).

Proposition 3. If {v1, . . . , vn} is a basis of V , then {T (v1), . . . , T (vn)} is a spanning set of
Im(T ). If T is injective then {T (v1), . . . , T (vn)} is a basis of Im(T ). In particular, if T is
injective then rank(T ) = n.

Proof. Let y ∈ Im(T ). Then y = T (x) for some x ∈ V , and we may write x = c1v1+. . .+cnvn
for some ci ∈ F . Then y = T (x) = T (c1v1 + . . . + cnvn) = c1T (v1) + . . . + cnT (vn), so
y ∈ Span({T (v1), . . . , T (vn)}, which says this is a spanning set of Im(T ). If further we
assume that T is injective, if c1T (v1) + . . .+ cnT (vn) = 0, then T (c1v1 + . . .+ cnvn) = 0, so
c1v1 + . . .+ cnvn ∈ ker(T ). Since T is injective, this says c1v1 + . . .+ cnvn = 0, and since the
vectors vi are linearly independent this says ci = 0, i.e. that {T (v1), . . . , T (vn)} is linearly
independent and therefore a basis of Im(T ), so that rank(T ) = n. �

Theorem 0.17. (Rank-Nullity) Let W be a vector space. If T : V → W is linear, then
rank(T ) + dim(ker(T )) = n.

Proof. Pick a basis {v1, . . . , vk} of ker(T ) and extend this to a basis {v1, . . . , vk, w1, . . . , w`}
of V . The above shows that Im(T ) = Span({T (w1), . . . , T (w`)}), so {T (w1), . . . , T (w`)}
is a spanning set and therefore it’s sufficient to prove it is a basis of Im(T ). Suppose
c1T (w1) + . . . + c`T (w`) = 0. Then T (c1w1 + . . . + c`w`) = 0, so c1w1 + . . . + c`w` ∈
ker(T ). We may then write c1w1 + . . . + c`w` = a1v1 + . . . + akvk for some ai ∈ F , so
c1w1 + . . .+ c`w` − a1v1 − . . .− akvk = 0. Since the vectors wi, vj are a basis of V , this says
all ci = 0 and all ai = 0, so that {T (w1), . . . , T (w`)} is a basis as desired. �
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Sometimes dim(ker(T )) is referred to as the nullity of T , hence the name of the theorem,
but this terminology is not commonly used outside of linear algebra textbooks. As an
immediate corollary of the rank-nullity theorem, we getting the following analogous result
for functions between finite sets of the same size:

Corollary 0.18. Let V and W be vector spaces of the same dimension. Then T : V → W
is injective ⇐⇒ T is surjective ⇐⇒ T is bijective.

Proof. T is injective if and only if ker(T ) = {0}, so by rank-nullity this says n = rank(T )+0,
i.e. Im(T ) = W so T is surjective. Similarly if T is surjective, rank(T ) = n so rank-
nullity says n = n + dim(ker(T )) so dim(ker(T )) = 0 gives ker(T ) = {0} and therefore T is
injective. �

We give some examples to illustrate how the rank-nullity theorem is used to compute images
and kernels of linear transformations.

Example 0.19. Let T : R3 → R3 be given by T (x, y, z) = (x+y+2z, 2x+2y+4z, 2x+3y+
5z). Then T is a linear transformation, and Im(T ) = Span({(1, 2, 2), (1, 2, 3), (2, 4, 5)}) =
Span({(1, 2, 2), (1, 2, 3)}). The latter set is a basis for Im(T ), so that rank(T ) = 2, i.e. Im(T )
is a plane in R3. By rank-nullity the kernel of T is 1-dimensional, so it must be a line. Which

line is it? Representing T as the matrix A =

1 1 2
2 2 4
2 3 5

, one sees that any vector orthogonal

to the rows of A is contained in the kernel. Taking the cross product of the first and third
rows shows (−1, 1, 1) ∈ ker(T ) so that ker(T ) = Span({(−1, 1, 1)}).
Example 0.20. Let T : Mn(F )→ F be the trace map T (A) = tr(A). Clearly T is surjective,
so by rank-nullity we have dim(ker(T )) = n2−1. For A ∈ ker(T ), we have a11+ . . .+ann = 0,
which says a11 = −a22− . . .−ann. Since the condition on trace has nothing to do with entries
off the diagonals, we see that the matrices Eij with i 6= j along the matrices −E11 +Eii with
2 ≤ i ≤ n form a spanning set for ker(T ), and therefore a basis because there are n2 − 1 of
them.

Example 0.21. The map T : P (R)→ P (R) defined by T (p) = 5p′′+ 3p′ is surjective. Let q
be a polynomial of degree n. Restricting T to Pn+1(R) defines a map T ′ : Pn+1(R)→ Pn(R).
with T ′(p) = T (p). By rank-nullity, rank(T ′) + dim(ker(T ′)) = n + 2. If p ∈ ker(T ′), then
5p′′ + 3p′ = 0 says 5p′′ = −3p′. Since deg(p′′) = deg(p′)− 1, this is impossible unless both p′

and p′′ are 0, i.e. p is a constant. This says ker(T ′) = Span({1}), so ker(T ′) is 1-dimensional,
and rank(T ′) = n+ 1 says T ′ is surjective.

Example 0.22. Let F not be of characteristic 2, and T : Mn(F ) → Mn(F ) be given by
T (A) = A−At. The rank-nullity theorem says that dim(Symn(F )) + dim(Skewn(F )) = n2.

One can check (by explicitly finding a basis) that dim(Skewn(F )) = n(n−1)
2

, so dim(Symn(F )) =

n2 − n(n−1)
2

= n(n+1)
2

.

Example 0.23. Let dim(V ) = n and dim(W ) = m with n < m. Then there is no surjective
linear transformation T from V to W : by rank-nullity, rank(T ) + dim(ker(T )) = n, so
rank(T ) = n − dim(ker(T )) ≤ n < m says Im(T ) 6= W . Similarly, if n > m there is no
injective linear transformation from V to W . This says if n < m then an m-dimensional
vector space is “larger” than an n-dimensional vector space, which hopefully matches with
your intuition.
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We end with some useful dimension formulas:

Proposition 4. Let W,U ⊂ V be subspaces. Then dim(W ⊕ U) = dim(W ) + dim(U) and
dim(V/W ) = dim(V )− dim(W ).

Proof. Define T : W ⊕ U → W by x → xW , where the element x ∈ W ⊕ U is written
uniquely as xW + xU for some xW ∈ W and xU ∈ U . This map is easily see to be linear,
and is surjective since T (w + 0) = w for any w ∈ W . We also see that ker(T ) = U , so by
rank-nullity, we have dim(W ⊕ U) = dim(U) + dim(W ) as desired.

For the other statement, define T : V → V/W by T (v) = v+W . Then T is linear, and T is
clearly surjective by the way it’s defined. We also see that ker(T ) = W , so that rank-nullity
says dim(V ) = dim(W ) + dim(V/W ). �

The vector space HomF (V,W )

Definition 0.24. A linear transformation T : V → W is called an isomorphism if T is
bijective. V and W are called isomorphic if there is an isomorphism between them, and
we write V ∼= W .

Definition 0.25. Let V and W be F -vector spaces. Then we define HomF (V,W ) = {T :
V → W : T is linear}, the set of linear transformations from V to W . If V = W , we instead
write EndF (V ).

Proposition 5. HomF (V,W ) is a subspace of F(V,W ).

Proof. If T, U ∈ HomF (V,W ) recall that by definition, we have (T + U)(v) = T (v) + U(v)
and (cT )(v) = cT (v). To check that HomF (V,W ) is a subspace, we need to check that it
is non-empty, and that for T, U linear transformations and c ∈ F that T + U and cT are
linear transformations. Note that the 0 function T (x) = 0 for all x ∈ V is certainly linear.
If x, y ∈ V then (T + U)(x + y) = T (x + y) + U(x + y) = T (x) + U(x) + T (y) + U(y) =
(T + U)(x) + (T + U)(y). Next, for c ∈ F we have (T + U)(cx) = T (cx) + U(cx) =
cT (x) + cU(x) = c(T (x) + U(x)) = c(T + U)(x), so T + U is a linear transformation which
says T+U ∈ HomF (V,W ). For x, y ∈ V , c, k ∈ F , we have (cT )(x+y) = (cT )(x)+(cT )(y) =
cT (x) + cT (y) = (cT )(x) + (cT )(y), and (cT )(kx) = cT (kx) = k(cT (x)) = k(cT )(x). This
says cT is a linear transformation, so cT ∈ HomF (V,W ) so that HomF (V,W ) is a subspace
of F(V,W ). �

In most linear algebra books the space HomF (V,W ) is denoted as L(V,W ) and EndF (V ) as
L(V ), but the above notation is more common elsewhere in mathematics. One of the reasons
why finite dimensional vector spaces are so easy to study is that linear transformations
between V and W are the same things as functions defined on a basis of V . This reduces
much of the study of linear algebra to studying functions defined on a finite set. This is
stated precisely in the following form.

Theorem 0.26. Let V be finite dimensional, and let B be a basis of V . Then HomF (V,W ) ∼=
F(B,W ). In other words, every linear transformation is determined uniquely by what it does
on a basis of V .

Proof. Suppose that T : V → W is a linear transformation, and let B = {v1, . . . , vn} be a
basis of V . For x ∈ V , we may uniquely write x = c1v1+ . . .+cnvn, so T (x) = c1T (v1)+ . . .+
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cnT (vn) by linearity. This defines a function f : B → W by f(vi) = T (vi). Now suppose
we have a function f : B → W . Define Tf : V → W by Tf (c1v1 + . . . + cnvn) = c1f(v1) +
. . . + cnf(vn). We need to check that Tf is a linear transformation, and that it is the only
transformation that agrees with f on B. Write x = c1v1+. . .+cnvn and y = d1v1+. . .+dnvn.
Then Tf (x+y) = Tf ((c1 +d1)vn+ . . .+ (cn+dn)vn) = (c1 +d1)f(v1) + . . .+ (cn+vn)f(vn) =
c1f(v1)+ . . .+cnf(vn)+d1f(v1)+ . . .+dnf(vn) = Tf (x)+Tf (y). For c ∈ F , we have Tf (cx) =
Tf ((cc1)v1+. . .+(ccn)vn) = (cc1)f(v1)+. . .+(ccn)f(vn) = c(c1f(v1)+. . .+cnf(vn)) = cTf (x),
which shows that Tf is linear. Finally, suppose there is some other linear transformation
T ′ : V → W such that T ′(vi) = f(vi). As mentioned above then says for any x ∈ V ,
T ′(x) = T ′(c1v1 + . . .+ cnvn) = c1T

′(v1) + . . .+ cnT
′(vn) = c1f(v1) + . . . cnf(vn) = Tf (x), i.e.

T ′ = Tf so Tf is the only linear transformation with this property.

Putting this all together, this says the map G : F(B,W )→ HomF (V,W ) with G(f) = Tf is
a bijection: it is injective because if G(f) = G(g), then Tf = Tg for all x ∈ V . This then says
Tf (vi) = f(vi) = g(vi) = Tg(vi) for all vi, so that f = g because they agree on all elements
of B. It is surjective because T ∈ HomF (V,W ) defines a map f : B → W by f(vi) = T (vi)
and by definition we have G(f) = T . It remains to show that G is linear, however this is
clear because G(f + g) = Tf+g = Tf + Tg because Tf+g(vi) = (f + g)(vi) = f(vi) + g(vi) =
Tf (vi) + Tg(vi) so Tf+g and Tf + Tg agree on B and therefore on all of V . Similarly we see
Tcf = cTf for c ∈ F , so G is linear and we are done. �

Theorem 0.27. Two finite dimensional vector spaces are isomorphic if and only if they
have the same dimension.

Proof. Suppose that V,W are finite dimensional with V ∼= W . Then by definition, there is a
bijective linear transformation T : V → W . By rank-nullity, rank(T ) + dim(ker(T )) =
dim(V ), and since T is a bijection this says Im(T ) = W so rank(T ) = dim(W ) and
dim(ker(T )) = 0, i.e. dim(V ) = dim(W ). Now Suppose that V and W are vector spaces
of the same dimension. Let B = {v1, . . . , vn} be a basis of V and B′ = {w1, . . . , wn} be
a basis of W . Define f : B → W by f(vi) = wi. The previous theorem gives us a linear
transformation Tf : V → W . Write x = c1v1 + . . . + cnvn. Then if Tf (x) = 0, this says
c1T (v1) + . . . + cnT (vn) = c1w1 + . . . + cnwn = 0, so all ci = 0 because wi are linearly
independent. This says x = 0, so ker(T ) = {0}. Thus, T is injective and therefore bijective,
so V ∼= W . �

The matrix of a linear transformation

Throughout this section V and W are finite dimensional F -vector spaces of dimensions n
and m respectively, with bases β = {v1, . . . , vn} and γ = {w1, . . . , wm}.

For any vector x ∈ V , we may uniquely write x = c1v1 + . . . + cnvn, so the data of the
vector x is contained entirely in the list of coefficients of the basis vectors. This gives the
following definition.

Definition 0.28. The coordinate representation of a vector x = c1v1 + . . . + cnvn with
respect to the basis β = {v1, . . . , vn} of V is defined by [x]β = (c1, . . . , cn) ∈ F n.

Example 0.29. Let x = (1, 3) ∈ R2 and let β = {e1, e2} be the standard basis of R2.
Then x = e1 + 3e2 so [x]β = (1, 3). Set γ = {(1, 1), (1,−1)}. Then x = 2(1, 1) − (1,−1) so
[x]γ = (2,−1). With α = {(1, 3), (1, 0)} we have [x]α = (1, 0).
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Example 0.30. Let β = {1, x, x2} be the standard basis of P2(R). Then with p(x) =
4−3x+3x2, we have [p(x)]β = (4,−3, 3). If γ = {1, x, 3

2
x2− 1

2
}, we have [p(x)]γ = (5,−3, 2),

as 5− 3x+ 2(3
2
x2 − 1

2
) = p(x).

Example 0.31. Let β = {E11, E12, E21, E22} be the standard basis of M2(R), and let γ =

{E11, E12+E21, E22} be a basis of Sym2(R). Let A =

(
2 −1
−1 5

)
Then viewed as an element

of M2(F ), we may write [A]β = (2,−1,−1, 5), but viewed as an element of Sym2(R) we have
[A]γ = (2,−1, 5).

Example 0.32. View C as an R-vector space with basis β = {1, i}. Then x = 3 + 5i has
[x]β = (3, 5). As a C-vector space, C has basis γ = {1}, so [x]γ = 3 + 5i

Proposition 6. The map Cβ : V → F n given by Cβ(x) = [x]β gives an isomorphism
V ∼= F n.

Proof. Let x, y ∈ V with x = c1v1 + . . . + cnvn and y = d1v1 + . . . + dnvn. Then x + y =
(c1 + d1)v1 + . . .+ (cn + dn)vn. We have Cβ(x+ y) = (c1 + d1, . . . , cn + dn) = (c1, . . . , cn) +
(d1, . . . , dn) = Cβ(x) +Cβ(y). For any k ∈ F , we have kx = kc1v1 + . . .+kcnvn, so Cβ(kx) =
(kc1, . . . , kcn) = k(c1, . . . , cn) = kCβ(x). This proves that Cβ is linear. If Cβ(x) = 0, this
says that x = 0v1 + . . .+ 0vn = 0. This says ker(Cβ) = {0}, so Cβ is injective and therefore
bijective giving V ∼= F n. �

Coordinates are one of the best ideas in mathematics, and in linear algebra this is no
different. Coordinates give us a way of viewing a vector in an abstract vector space as a
more concrete n-tuple of elements of F . In fact, we can do more: using coordinates, we can
associate to every linear transformation T : V → W a matrix [T ]γβ ∈Mm×n(F ). This reduces
the study of linear maps from V to W , and therefore linear algebra as a whole, to studying
Mm×n(F ).

For x ∈ V , write x = c1v1 + . . . + cnvn, so T (x) = c1T (v1) + . . . + cnT (vn). Since the
coordinate map Cγ : W → Fm is a linear transformation, this says [T (x)]γ = c1[T (v1)]γ +
. . . + cn[T (vn)]γ. Set [T (vi)]γ = (a1i, . . . , ami). Written as a matrix equation, [T (x)]γ =a11 . . . a1n

...
. . .

...
am1 . . . amn

c1...
cn

.

Definition 0.33. Let T : V → W be a linear transformation. The matrix of T with

respect to β and γ is denoted by [T ]γβ and is defined by [T ]γβ =

 p p
[T (v1)]γ . . . [T (vn)]γ

p p

.

That is, [T ]γβ is the matrix whose columns are given by [T (vi)]γ. If T : V → V and β = γ,
then we usually just write [T ]β.

The definition of the matrix of T says that [T (x)]γ = [T ]γβ[x]β, and so one can then recover
the actual vector T (x) by setting up the corresponding linear combination of basis vectors
in γ.
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Example 0.34. Let T : R3 → R3 with T (x, y, z) = (x + 3z,−x + 2y + z, x + y + z). With

β = {e1, e2, e3}, and γ = {(1,−1, 1), (0, 2, 1), (3, 1, 1)}, we see [T ]β =

 1 0 3
−1 2 1
1 1 1

, and

[T ]γβ =

1 0 0
0 1 0
0 0 1

.

Example 0.35. Let T : M2(F ) → M2(F ) be given by T (A) = A − At. With β =

{E11, E12, E21, E22} the standard basis of M2(F ), we have [T ]β =


0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0

.

Example 0.36. Let α = a + bi ∈ C. View C as an R-vector space with the standard basis
β = {1, i} , and consider the linear transformation T : C → C defined by T (x) = αx, the

multiplication by α map. Then [T ]β =

(
a −b
b a

)
. This says any complex number a+ bi can

be thought of as the matrix

(
a −b
b a

)
.

Example 0.37. Let D : P3(R) → P2(R) be the derivative map, and β = {1, x, x2, x3} and

γ = {1, x, x2} be the standard bases of P3(R) and P2(R). Then [D]γβ =

0 1 0 0
0 0 2 0
0 0 0 3

.

Example 0.38. Set V = Span({sin(x), cos(x)}) ⊂ C∞(R) and define T : V → V by

T (f) = 3f + 2f ′ − f ′′. With β = {sin(x), cos(x)}, we see that [T ]β =

(
4 4
2 −2

)
because

T (sin(x)) = 4 sin(x)+2 cos(x) and T (cos(x)) = 4 sin(x)−2 cos(x). Using row reduction, one
can check the only solution to [T ]βx = 0 is x = 0. This says no non-trivial linear combination
of sin(x) and cos(x) are solutions the the differential equation 3f + 2f ′ − f ′′ = 0.

Example 0.39. Let T : V → V be linear and suppose W is a T -invariant subspace. Let U
be the complement of W in V , so V = W ⊕ U . If {w1, . . . , wk} and {u1, . . . , u`} are bases
of W and U , then {w1, . . . , wk, u1, . . . , u`} is a basis of V . Since T (W ) ⊂ W , we may write
T (wi) = ci1w1 + . . . + cikwk, so [T (wi)]β = (c1i, . . . , cki, 0, . . . , 0). This gives that [T ]β is a

block matrix of the form

(
A B
O C

)
, where A is the k×k matrix [cij], O is the (n−k)×(n−k)

zero matrix, and B and C are some matrices of size (n− k)× (n− k) and k× k respectively.
Therefore having a T -invariant subspace allows one to decompose the matrix of T into an
easier to work with block form.

The results of this section that there is a correspondence between matrices and linear
transformations can be summed up in the below theorem.

Lemma 0.40. Let T, U : V → W be linear transformations, and c ∈ F . Then [T + U ]γβ =

[T ]γβ + [U ]γβ and [cT ]γβ = c[T ]γβ.
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Proof. By definition, the i-th column of [T+U ]γβ is equal to [(T+U)(vi)]γ = [T (vi)+U(vi)]γ =
[T (vi)]γ + [U(vi)]γ by linearity of the map Cγ. However, this is clearly also the i-th column
of the matrix [T ]γβ + [U ]γβ so [T +U ]γβ = [T ]γβ + [U ]γβ. Similarly, the i-th column of the matrix

[cT ]γβ is given by [(cT )(vi)]γ = [cT (vi)]γ = c[T (vi)]γ, which is again the i-th column of the

matrix c[T ]γβ. �

Theorem 0.41. HomF (V,W ) ∼= Mm×n(F ). So in particular, dim(HomF (V,W )) = mn.

Proof. Define F : HomF (V,W ) → Mm×n(F ) by F (T ) = [T ]γβ. Suppose that F (T ) = F (U).

Then [T ]γβ = [U ]γβ, so in particular the columns of these matrices are the same so [T (vi)]γ =
[U(vi)]γ for all i. Translating back to the actual vectors says T (vi) = U(vi), i.e. T = U so F

is injective. For a matrix A =

 p p
x1 . . . xn
p p

 ∈ Mm×n(F ), write xi = (a1i, . . . , ami). Then

define f : B → W by f(vi) = a1iw1 + . . . + amiwm. This defines a linear transformation
T : V → W with T (vi) = f(vi) so in coordinates, [T (vi)]γ = [f(vi)]γ = xi. This then says
[T ]γβ = A, so that F is surjective, so F is a bijection. By the above lemma, F is linear, so F
is an isomorphism as desired. The dimension result then follows immediately. �

Invertibility

Recall that a function f : X → Y is said to be invertible if there is g : Y → X such that
f ◦ g = idY and g ◦ f = idX , and we denote g = f−1. From set theory, f is invertible if
and only if f is a bijection. For linear transformations T : V → W and S : W → Z, we
denote the composition S ◦T by ST , and clearly then T is an isomorphism if and only if T is
invertible. Since linear transformations correspond to matrices, we make a similar definition.

Definition 0.42. Let A ∈ Mn(F ). Then A is invertible if there is B ∈ Mn(F ) such that
AB = BA = In. If such a matrix exists it’s easy to see that it must be unique, and we then
write B = A−1.

Definition 0.43. Let V be a vector space. We define GL(V ) = {T ∈ EndF (V ) : T is invertible}.
Similarly, we set GLn(F ) = {A ∈Mn(F ) : A is invertible}.

Proposition 7. Let T : V → W and S : W → Z be linear transformations. Then ST :
V → Z is a linear transformation. If T is invertible, then T−1 is a linear transformation.

Proof. For x, y ∈ V we have ST (x+ y) = S(T (x+ y)) = S(T (x) + T (y)) = ST (x) + ST (y),
and for c ∈ F , we also have ST (cx) = S(T (cx)) = S(cT (x)) = cST (x) since S, T are
linear. Suppose that T is invertible with inverse T−1. For w,w′ ∈ W , T−1(w + w′) is the
vector that maps to w + w′ under T . Since T is linear, T (T−1(w) + T−1(w′)) = w + w′, so
T−1(w + w′) = T−1(w) + T−1(w′). Similarly we see for c ∈ F that T−1(cw) = cT−1(w) so
T−1 is linear.

�

Proposition 8. Let S : W → Z and T : V → W be linear transformations, and let α, β, γ
be bases of the finite dimensional vector spaces V,W,Z respectively. Then [ST ]γα = [S]γβ[T ]βα

Proof. Let α = {v1, . . . , vn} and β = {w1, . . . , wk}. By definition, the i-th column of [ST ]γα
is given by [ST (vi)]γ. The i-th column of [S]γβ[T ]βα is Sγβ [T (vi)]β, so it’s sufficient to check
these expressions are equal. Write T (vi) = c1iw1 + . . . + ckiwk. Then ST (vi) = S(c1iw1 +
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. . . + ckiwk) = c1iS(w1) + . . . + c1kS(wk). Applying Cγ then gives [ST (vi)]γ = c1i[S(w1)]γ +

. . .+ c1k[S(wk)]γ, which we then recognize as saying [ST (vi)]γ = [S]γβ[T (vi)]β as desired.
�

Proposition 9. Let T : V → W be a linear transformation, and let β, γ be bases of the finite
dimensional vector spaces V and W . Then T is invertible if and only if [T ]γβ is invertible,

and further ([T ]γβ)−1 = [T−1]βγ .

Proof. If T is invertible, then T−1 : W → V satisfies TT−1 = idW and TT−1 = idV , so the
above says [T ]γβ[T−1]βγ = [T−1]βγ [T ]γβ = In, so that ([T ]γβ)−1 = [T−1]βγ . Conversely, suppose

that [T ]γβ is invertible. Then the columns of [T ]γβ are linearly independent: if not, there
are c1, . . . , cn ∈ F not all 0 such that c1[T (v1)]γ + . . . + cn[T (vn)]γ = 0, i.e. there is a
non-trivial solution to [T ]γβx = 0. However, this is impossible because multiplying by the

inverse of [T ]γβ on the left shows that if the above holds then necessarily x = 0. This says
that the vectors [T (vi)]γ in F n are linearly independent, and as the coordinate mapping
is an isomorphism this then implies that the vectors wi = T (vi) are linearly independent
vectors in W , and therefore are a basis of W . Define a linear transformation S : W → V
by S(wi) = vi and extend linearly. By definition, ST (vi) = S(wi) = vi, so ST = idV , and
similarly TS(wi) = T (vi) = wi, so TS = idW so that T is invertible as desired.

�

Knowing if a linear transformation is an isomorphism or not is extremely important –
if two vector spaces V and W are isomorphic, this essentially says that W and V are the
“same” vector space up to relabeling of the elements, because addition of vectors in one
space corresponds uniquely to addition of vectors in the other. This then reduces the study
of vector spaces to studying vector spaces up to isomorphism. If T is a linear operator on
some vector space V , knowing that T is invertible is very powerful, as will hopefully be
demonstrated in the following examples.

Example 0.44. Let V = Span({eax sin(bx), eax cos(bx)}) ⊂ C∞(R) for a, b 6= 0, and let
D be the differential operator. Then V is a 2-dimensional D-invariant subspace. With

β = {eax sin(bx), eax cos(bx)}, the matrix [D|V ]β is given by [D|V ]β =

(
a −b
b a

)
. Since

det([D|V ]β) = a2 + b2 6= 0, D|V is invertible with inverse A =

(
a

a2+b2
b

a2+b2

− b
a2+b2

a
a2+b2

)
. As∫

f ′(x) dx = f(x) +C and d
dx

∫
f(x) dx = f(x), choosing the choice of constant to be C = 0

says the inverse of D is the indefinite integral operator. To integrate say,
∫
eax sin(bx) dx, we

seeA[eax sin(bx)]β = ( a
a2+b2

,− b
a2+b2

), so converting back into vectors of V says
∫
eax sin(bx) dx =

a
a2+b2

eax sin(bx) − b
a2+b2

eax cos(bx) + C after appending back the arbitrary constant of inte-
gration.

Example 0.45. ASCII is an encoding standard that associates characters to 7-digit binary
strings, which we may think of as elements of (Z/2Z)7. Fix a matrix A ∈ GL7(Z/2Z). A
simple encryption method is as follows: given a message M , convert each character c of
M to ASCII and then convert it into a vector xc ∈ (Z/2Z)7. Encrypt M character-wise
by computing Axc for all characters, and convert back to text. Since M is invertible, the
message can be decrpyted by again converting text to ASCII and multiplying characters
by A−1. As an example, the message “TEST” corresponds to the block of binary strings
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“1010100 1000101 1010011 1010100”. With A =



1 1 1 0 1 0 1
0 1 0 1 1 0 1
1 0 0 1 1 1 1
0 1 0 1 0 1 0
0 0 0 0 1 0 1
0 0 1 0 0 1 1
1 0 0 0 0 1 0


, this gets encrypted

to the message “gS∼g”, which can be decrypted if A or A−1 is known.

We showed above that checking the invertibility of a linear operator T is the same as
checking the invertibility of its corresponding matrix. We remind the reader of some of
many equivalent conditions for checking the latter:

Theorem 0.46. Let A ∈Mn(F ). Then the following are equivalent:

(a) A is invertible.
(b) The only solution in F n to Ax = 0 is x = 0.
(c) The columns of A are linearly independent.
(d) A is row-equivalent to In.
(e) det(A) 6= 0.
(f) The augmented matrix [A|I] is row equivalent to [I|B] for some non-zero matrix B.

Change of basis and similarity

Given a linear operator T on V , the matrix [T ]β depends on a choice of basis β of V . Pick-
ing a different basis β′ will produce a different looking matrix [T ]β′ , but it still represents
the same operator T . A natural question is given two matrices A,B ∈Mn(F ), how can one
check if they come from the same linear operator in GL(V )?

Pick bases β, γ of V , and consider the identity operator idV, along with the corresponding
matrix [idV ]γβ. This matrix satisfies [x]γ = [idV (x)]γ = [idV ]γβ[x]β for all x ∈ V , or in other

words, multiplication by [idV ]γβ converts the coordinates of the vector x from the basis β to
the basis γ.

Definition 0.47. Let V be a vector spaces with basis β = {v1, . . . , vn}, and let γ =
{v′1, . . . , v′n} be another basis. The change of basis matrix from β to γ, denoted Sγβ ,

is the matrix [idV ]γβ. Explicitly, Sγβ =

 p p
[v1]γ . . . [vn]γ
p p

.

Since idV is invertible, this says Sγβ is invertible, and has inverse matrix [idV ]βγ = Sβγ .

Theorem 0.48. Let β, γ be two bases of a finite dimensional vector space V , and let T ∈
GL(V ). Then [T ]γ = Sγβ [T ]βS

β
γ , and [T ]γS

γ
β = Sγβ [T ]β. In otherwords, the following diagram

commutes.

[x]β [T (x)]β

[x]γ [T (x)]γ

[T ]β

Sγβ Sγβ

[T ]γ



12 TIM SMITS

Proof. Since composition of linear transformations corresponds to multiplication by their
corresponding matrices, we see [T ]γ = [idV ◦ T ◦ idV ]γγ = [idV ]γβ[T ]β[idV ]βγ = Sγβ [T ]βS

β
γ .

Since Sγβ is invertible with inverse Sβγ , multiplication on the left gives Sβγ [T ]γ = [T ]βS
β
γ as

desired. �

Example 0.49. Let β = {e1, e2} be the standard basis of R2 and γ = {(1, 1), (1, 2)} be

another basis. The change of basis matrix Sβγ is Sβγ =

(
1 1
1 2

)
. To compute Sγβ , we take the

inverse to find Sγβ =

(
2 −1
−1 1

)
. To compute [e1]γ, we see [e1]γ = Sγβ [e1]β = Sγβe1 = (2,−1),

so that (1, 0) = 2(1, 1)− (1, 2).

Example 0.50. Let β = {1, x, x2} and γ = {1, x, 3
2
x2 − 1

2
} be bases of P2(R). Then

Sβγ =

1 0 −1
2

0 1 0
0 0 3

2

, and one can compute Sγβ =

1 0 1
3

0 1 0
0 0 2

3

. Let T : P2(R) → P2(R) be

defined by T (f)(x) = xf ′(x). Then [T ]β =

0 0 0
0 1 0
0 0 2

 and the change of basis formula says

[T ]γ =

0 0 1
0 1 0
0 0 2

.

Example 0.51. Let T : R3 → R3 be given by T (x, y, z) = (2z,−2x+ 3y+ 2z,−x+ 3z). Let
β = {e1, e2, e3} be the standard basis of R3, and let γ = {(2, 1, 1), (1, 0, 1), (0, 1, 0)} be an-

other basis. Then [T ]β =

 0 0 2
−2 3 2
−1 0 3

. We see Sβγ =

2 1 0
1 0 1
1 1 0

, and Sγβ =

 1 0 −1
−1 0 2
−1 1 1

,

so the change of basis formula says [T ]γ =

1 0 0
0 2 0
0 0 3

. With respect to the new basis γ,

this says that T acts along each γ-direction by scaling. Having a basis where an operator is
diagonal is extremely useful, as it allows one to easily compute values of compositions. For ex-
ample, to compute T n(1, 2, 3), we compute [T n(1, 2, 3)]γ = [T n]γ[(1, 2, 3)]γ = [T ]nγ [(1, 2, 3)]γ.

We have [(1, 2, 3)]γ = Sγβ [(1, 2, 3)]β = (−2, 5, 4), so [T n(1, 2, 3)]γ = [T ]nγ(−2, 5, 4)T = (−2, 5 ·
2n, 4 ·3n). This says T n(1, 2, 3) = −2(2, 1, 1)+5 ·2n(1, 0, 1)+4 ·3n(0, 1, 0) = (−4+5 ·2n,−2+
4 · 3n,−2 + 5 · 2n).

Example 0.52. Consider P3(R), and set β = {1, x, x2, x3} and γ = {
(
x
0

)
, . . . ,

(
x
3

)
}, where(

x
0

)
= 1 and for k ≥ 1 we have

(
x
k

)
= x(x−1)...(x−k+1)

k!
. Then γ is a basis, because each polyno-

mial in γ has a different degree. The change of basis matrix Sβγ is given by


1 0 0 0
0 1 −1

2
1
3

0 0 1
2
−1

2
0 0 0 1

6

,
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and one can check that Sγβ =


1 0 0 0
0 1 1 1
0 0 2 6
0 0 0 6

. Then [x3]γ = Sγβ [x3]β = (0, 1, 6, 6), so x3 =

(
x
1

)
+6
(
x
2

)
+6
(
x
3

)
. As an application,

∑n−1
k=1 k

3 =
∑n−1

k=1

(
k
1

)
+6
(
k
2

)
+6
(
k
3

)
=
(
n
2

)
+6
(
n
3

)
+6
(
n
4

)
=

(n(n−1)
2

)2, which follows from the identity
∑n−1

k=1

(
k
r

)
=
(
n
r+1

)
, easily proven by induction.

The theorem from above leads us to the following definition:

Definition 0.53. For A,B ∈Mn(F ), we say that A and B are similar and write A ∼ B if
there exists P ∈ GLn(F ) such that A = PBP−1.

Since Sβγ = (Sγβ)−1, this says that for any choice of bases β, γ of V the matrices [T ]β and
[T ]γ are similar. The following observation is easy to verify:

Proposition 10. Similarly is an equivalence relation on Mn(F ).

We showed that changing the basis of V from β to γ yields similar matrices [T ]β and [T ]γ.
The converse is true as well:

Theorem 0.54. A ∼ B in Mn(F ) if and only if there are bases β, γ of V and a linear
transformation T such that A = [T ]β and B = [T ]γ. That is, similar matrices correspond to
the same linear transformation under potentially different bases.

Proof. Suppose that A ∼ B in Mn(F ), so there is P ∈ GLn(F ) such that A = PBP−1,
and let β = {v1, . . . , vn} be any basis of V . We have seen that we may choose T such that
[T ]β = A, so it remains to find γ such that [T ]γ = B. To do this, we would like to think
of P as some change of basis matrix. Define wi such that [wi]β = Pei, where ei are the
standard basis vectors of F n. As P is invertible, its columns are linearly independent, and
because the coordinate map Cβ is an isomorphism, wi are also linearly independent so that
γ = {w1, . . . , wn} is a basis of V . Then Sβγ is the matrix with columns [wi]β = Pei, so

Sβγ = P , and Sγβ = P−1. Since A = PBP−1, this says B = P−1AP = Sγβ [T ]βS
β
γ = [T ]γ as

desired. The backwards direction was proven above.
�

The conjugacy classes of matrices in Mn(F ) under similarly correspond to the distinct
linear operators T ∈ GL(V ), regardless of choice of basis. Therefore if one cares only about
the different types of operators that arise on V , the importance of studying matrices up to
similarity is self evident. To be able to distinguish between conjugacy classes, it’s helpful to
known some quantities that are invariant under similarity.

Lemma 0.55. Let A,B ∈Mn(F ). Then tr(AB) = tr(BA).

Proof. Write A = (aij) and B = (bij). Then tr(AB) =
∑n

i=1(AB)ii =
∑n

i=1

∑n
k=1 aikbki. On

the other hand, tr(BA) =
∑n

i=1(BA)ii =
∑n

i=1

∑n
k=1 bikaki. By renaming variables i and k,

we have
∑n

i=1

∑n
k=1 bikaki =

∑n
k=1

∑n
i=1 bkiaik, and by swapping the order of summation this

equals
∑n

i=1

∑n
k=1 aikbki as desired. �

Proposition 11. Let A,B ∈ Mn(F ), with A ∼ B. Then tr(A) = tr(B) and det(A) =
det(B).
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Proof. As A ∼ B, there is P ∈ Mn(F ) such that A = PBP−1. By the lemma, tr(A) =
tr(P (BP−1)) = tr((BP−1)P ) = tr(B). Similarly, we find that det(A) = det(PBP−1) =
det(P ) det(B) det(P−1) = det(B) det(P ) det(P−1) = det(B) det(In) = det(B) by properties
of the determinant. �

Since similarity corresponds to change of basis, this allows us to define these quantities
for a linear operator.

Definition 0.56. Let V be finite dimensional. For T ∈ GL(V ) we define the trace of T and
the determinant of T to be the quantities tr([T ]β) and det([T ]β) for any choice of basis β
of V .

Example 0.57. The matrices A =

(
1 2
3 4

)
and B =

(
0 2
1 −3

)
are not similar, because

tr(A) = 5 while tr(B) = −3. However, both det(A) = det(B) = −2.

Recall that the rank of a linear transformation T was defined as the dimension of it’s
image. We can also similarly define rank in terms of a matrix representation of T :

Proposition 12. Let A,B ∈Mn(F ) and suppose that A ∼ B. Then rank(A) = rank(B).

Proof. Write A = PBP−1 for some P . Define T : Im(A) → F n by T (x) = P−1x. Then
T is injective because P is invertible, so dim(Im(A)) = dim(Im(T )). We also see that if
y ∈ Im(T ), then y = P−1x for some x ∈ Im(A). Write x = Az, so y = P−1(Az) =
B(P−1z) ∈ Im(B). This gives rank(A) ≤ rank(B). Similarly with S : Im(B) → F n defined
by S(x) = Px, we find rank(B) ≤ rank(A), so that rank(A) = rank(B). �


