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The computation of the value of the infinite series
∑∞

n=1
1
n2 was an open problem that

gathered interest around 1644. It was attacked by many of the top mathematicians at the
time, but none of them were able to conjure up a solution. In 1735, a young mathematican
by the name of Euler gave the first solution, making one of his first (of many) important
contributions to mathematics. The goal of this handout is to give a solution to the Basel
problem using linear algebra.

Definition 0.1. A metric space is a set X with a function d : X ×X → R called a metric
(or distance function) that has the following properties:

(i) d(x, x) ≥ 0 for all x ∈ X.
(ii) d(x, y) = d(y, x) for all x, y ∈ X.

(iii) d(x, y) = 0 ⇐⇒ x = y.
(iv) (Triangle inequality) d(x, z) ≤ d(x, y) + d(y, z) for any x, y, z ∈ X.

When we speak of a metric space, we usually refer to the pair (X, d).

The idea of a metric space is that you have a way of measuring distances between two
elements of the set X. Some familiar examples of a metric space are R with the usual
distance between points given by the absolute value | · |, and Rn with the norm ‖ · ‖. In a
real analysis course, one learns that metric spaces are the natural settings to work in if you
want to generalize the ideas of calculus.

Definition 0.2. For a metric space (X, d), a sequence is a function s : N→ X. We usually
denote the values s(n) as xn. A sequence converges to a point x ∈ X if for all ε > 0,
there is an integer N such that n ≥ N means d(xn, x) < ε. If xn converges to x, we write
limn→∞ xn = x, or xn → x.

Definition 0.3. A sequence xn is called Cauchy if for any ε > 0, there is an integer N such
that if n,m ≥ N , we have d(xn, xm) < ε.

The idea of a Cauchy sequence is that it’s a sequence where the terms eventually be-
come arbitrarily close to each other. An important property of convergent sequences is the
following:

Proposition 1. Let (X, d) be a metric space, and suppose that xn converges. Then xn is
Cauchy.

One of the important observation that one makes when studying sequences is that the
converse is not true: not every Cauchy sequence converges! This is illustrated by the following
example:

Example 0.4. Let X = Q equipped with the metric d(x, y) = |x−y|. Define xn = (1+ 1
n
)n.

It turns out that xn is Cauchy, but xn does not converge in Q: from calculus, you know that
limn→∞ xn = e, but e is not rational.
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The metric space Q has “too many holes” for calculus to work. The way to fix this is to
require Cauchy sequences converge.

Definition 0.5. A metric space (X, d) is called complete if every Cauchy sequence in X
converges to a point in X.

In a first real analysis class, one learns that (R, | · |) is a complete metric space. This is the
key property that allows calculus to be developed. We now apply these ideas in the context
of linear algebra.

Proposition 2. Let (V, 〈−,−〉) be an inner product space, and let ‖ · ‖ be the norm induced
by this inner product. Then with d(x, y) = ‖x− y‖, (V, d) is a metric space.

Hopefully this isn’t surprising. An inner product on V give us way of measuring lengths
in V , which gives us a way of measuring distances!

Definition 0.6. A Hilbert spaceH is an inner product space such that the metric d(x, y) =
‖x− y‖ makes (H, d) a complete metric space.

Hilbert spaces are the basic object of study in functional analysis (which depending who
you ask, is nothing more than linear algebra on infinite dimensional vector spaces). These
are vector spaces where we can do calculus. As one might suspect, the most basic example
of a Hilbert space is Rn where the inner product is the usual dot product of vectors. Any
finite dimensional inner product space is a Hilbert space, but this requires a bit of work.

Definition 0.7. An orthonormal subset S of H is called complete if for x ∈ H, 〈x, v〉 = 0
for all v ∈ S means that x = 0.

We are now ready to state the theorem which we will use for our approach.

Theorem 0.8 (Parseval). Let H be a Hilbert space, and let S = {x1, x2, . . .} be a complete
orthonormal subset of H. Then for all y ∈ H, we have ‖y‖2 =

∑∞
n=1 |〈y, xi〉|2.

Our goal is to use Parseval’s theorem to compute the value of
∑∞

n=1
1
n2 . In order to do

this, we need to find a Hilbert space to work in.

The function space C([−π, π],C) can be given the structure of an inner product space,

via 〈f, g〉 =
∫ π
−π f(t)g(t) dt. This inner product induces a norm on C([−π, π],C) defined by

‖f‖2 =
√

1
2π

∫ π
−π |f(t)|2 dt. In a real analysis class, one learns that C([−π, π],C) is not a

complete metric space with respect to the metric induced by this norm. The way to fix this
is to instead look at the larger function space L2([−π, π]) = {f : [−π, π]→ C : ‖f‖2 <∞}.
We have the following non-trivial facts:

(i) L2([−π, π]) is complete with respect to the metric induced by ‖f‖2, making it a
Hilbert space.

(ii) The set S = {einx : n ∈ Z} is a complete orthonormal set in L2([−π, π]).

These two facts form the basis of Fourier analysis, which is where our approach draws
inspiration from.

Theorem 0.9.
∑∞

n=1
1
n2 = π2
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Proof. Consider f : [−π, π] → C defined by f(x) = x. Then f ∈ L2([−π, π]). We have

‖f‖22 = 1
2π

∫ π
−π x

2 dx = π2

3
. For n 6= 0, 〈f, einx〉 is given by 1

2π

∫ π
−π te

−int dt. Integrate by parts

with u = t and dv = e−int to get 1
2π

∫ π
−π te

−int dt = −t
2πin

e−int|π−π + 1
in

∫ π
−π e

−int dt = (−1)n+1

in
, so

that |〈f, einx〉|2 = 1
n2 . Applying Parseval’s theorem says that

∑∞
n=−∞

1
n2 = 2

∑∞
n=1

1
n2 = π2

3
,

so that
∑∞

n=1
1
n2 = π2
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This approach is far from Euler’s original solution (which abused notions of convergence
of infinite products). However, it should illustrate to you that the ideas of linear algebra
are extremely important in the study of function spaces. One benefit of our approach above
is that it can be generalized extremely easily. For example, taking f(x) = x2, one can

compute that
∑∞

n=1
1
n4 = π4

90
, and in general, you can compute

∑∞
n=1

1
n2k for any integer

k ≥ 0. However, whether or not the sum
∑∞

n=1
1
n3 has a closed form is still an open question.

In fact, we didn’t know the value of this sum was irrational until 1978! Why can’t the above
method be adapted? See if you can find what breaks!


