Axioms for Vector Spaces
Tim Smits

Unless otherwise stated, V' is a vector space over an arbitrary field.
1. Prove the following:

(a) ¢c-0=0for any c € F.
(b) (=1)-v = (—v) for any v € V.
2. (a) Prove the cancellation law for vector spaces: if u,v,w € V with u + w = v + w, then

u=v.

(b) Prove that the zero element is unique, i.e. if there are elements 0,0’ satisfying axiom VS
3, then 0 =10".

(¢) Prove that additive inverses are unique, i.e. if there are elements w,w’ satisfying axiom
VS 4, then w = w'.

3. For each of the following sets V', determine if the given addition and scalar multiplication
operations make V' a vector space over R. If it is, prove it. If not, give a counterexample to
one of the vector space axioms.

(a) V =R with operations a + b = ab and ¢ - a = a°.
(b) V= R2 with operations (al,az) + (bl, bz) = ((11 + bl, a2b2) and ¢ - (al, (12) = (cal, ag).
(c) V. = R? with operations (aj,b1) + (az,b2) = (a1 + az,b1 + by) and c - (a1,a2) =

(0,0) c=0
(car, %) c#0



Solutions

1.

2.

3.

C

(a) Since0+0=0,¢c-0=c-(0+0) =c¢-0+4c-0. Adding —(c-0) to both sides says
0=(c-04+c-0)+—(c-0)=c-04+(c-0+—(c-0))=c-0+0=c-0.

(b) Wehave 0 =0-v=(1+-1)-v=1-v+(-1)-v =v+4 (-1) - v. Adding —v to both
sides (and using associativity again) says —v = (—1) - v.

(a) If u+w = v+ w, add —w to both sides to get (u + w) + (—w) = (v + w) + (—w).
The left hand side becomes u + (w + (—w)) = u, while the right hand side becomes
v+ (w+ (—w)) = v by associativity.

(b) Suppose there are two 0 elements, 0 and 0', so that for any v € V, we have u + 0 = u
and u + 0’ = u. Equating says u + 0 = u 4 0', so applying the cancellation law (after
flipping addition order) says 0 = 0.

(c) Use the same proof : if there are two additive inverses w,w’ of some vector v € V', then
u+w =0 and u + w’ = 0. Equating says u + w = u + w’ and applying the cancellation
law again (once more, after flipping addition order) says w = w’.

(a) Weirdly enough, V' is a vector space. Let’s verify the 8 vector space axioms:

(i) Let ,y € V. Then z +y = a2y and y + z = yz, and since multiplication of real
numbers is commutative, we have ¢ +y = zy = yxr = y + =.

(ii) Let x,y,2z € V. Then (z+y)+2z = (zy)z = z(y2z) = 2+ (y+2) because multiplication
of real numbers is associative.

(iii) The zero element of V is the real number 1: this is because for any = € V', we have
x4+ 1= (x)(1) = z, because 1 is the multiplicative identity of R.

(iv) The additive inverse of = is given by %: this is because for any = € V, we have
r4+1=(2)(1/z) =1.

(v) For x € V, we have 1 -z = 2! = z.

(vi) For a,b € R and z € V, we have (ab) -z = 2%, and a- (b-2) = a - (z°) = (z*)* =
2%® = 2% by how exponentiation works and because multiplication of real numbers
is commutative.

(vii) For a € Rand z,y € V, we have a- (z+y) = a- (zy) = (zy)*, and a -z +a-y =
% +y® = (2%)(y*) = (vy)® again by how exponents work.

(viii) For a,b € R and = € V, we have (a +b) - z = %% = (2%)(2°), while a -2 + b 2 =
2%+ 2t = (29)(2?).

This is a great example to work through and explicitly write down where the various

operations are happening (i.e. in the vector space V' vs. in the field R), as well as what

axioms are being used (field vs. vector space).

(b) This is not a vector space, because there is no zero element (which we will denote by 0
so there’s no confusion): for any (a,b) € R%, we have 0 = 0- (a,b) = (0,b), which says all
vectors (0,b) for b € R are zero elements. These are obviously distinct elements of R2,
but the previous problem showed that vector spaces have a unique 0 element.

(¢) This is not a vector space; scalar multiplication doesn’t work well with addition. We
have (1+2)-(1,1) =3-(1,1) = (3,3), while 1- (1, 1) +2-(1,1) = (1,1) + (2, 3) = (3,2).

All you need to disprove the statement is a counter-example, but of course the way you find
these counter-examples is that you first try checking if the axioms hold, and then are either
unsuccessful in your attempt, or realize from the required condition that they do not hold.
I didn’t come up with these out of thin air, I verified all the other axioms before the ones I
broke on the list!



