Inner Products and Orthogonality Tim Smits

- 1. Let $(V, \langle -, \rangle)$ be an inner product space, with basis β . Let $x, y \in V$.
 - (a) Show that if $\langle x, z \rangle = 0$ for all $z \in \beta$ then x = 0.
 - (b) Show that if $\langle x, z \rangle = \langle y, z \rangle$ for all $z \in \beta$ then x = y.
 - (c) Let $A \in M_n(\mathbb{C})$, and suppose that $\operatorname{tr}(AX) = 0$ for all $X \in M_n(\mathbb{C})$. Show that A = 0.
- 2. Let $(V, \langle -, \rangle)$ be an inner product space.
 - (a) (Parallelogram Law) Prove that $||x+y||^2 + ||x-y||^2 = 2||x||^2 + 2||y||^2$
 - (b) (Polarization) If V is a real inner product space, prove that $\langle x,y\rangle=\frac{1}{4}\|x+y\|^2-\frac{1}{4}\|x-y\|^2$
- 3. Let $(V, \langle -, \rangle)$ be an inner product space, and let $\beta = \{e_1, \dots, e_m\}$ be an orthonormal set of vectors. Show that $v \in \text{Span}\{e_1, \dots, e_m\}$ if and only if $||v||^2 = |\langle v, e_1 \rangle|^2 + \dots + |\langle v, e_m \rangle|^2$.

Solutions

- 1. (a) Let $\beta = \{v_1, \dots, v_n\}$ and write $x = c_1v_1 + \dots + c_nv_n$. Then $\langle x, x \rangle = \langle c_1v_1 + \dots + c_nv_n, x \rangle = c_1\langle v_1, x \rangle + \dots + c_n\langle v_n, x \rangle = 0$. This says $\|x\|^2 = 0$, so that x = 0.
 - (b) The condition is equivalent to saying $\langle x-y,z\rangle=0$ for all $z\in\beta$. By the previous part, x-y=0 so x=y.
 - (c) Let $\langle A, B \rangle = \operatorname{tr}(B^*A)$. Then $\langle A, A \rangle = \operatorname{tr}(A^*A) = \sum_{i,j} |a_{ij}|^2 = 0$, where $A = (a_{ij})$. This says $a_{ij} = 0$ for all i, j so that A = 0.
- 2. (a) Write everything as an inner product : $||x+y|^2 + ||x-y||^2 = \langle x+y, x+y \rangle + \langle x-y, x-y \rangle = \langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle + \langle x, x \rangle \langle x, y \rangle \langle y, x \rangle + \langle y, y \rangle = 2 \langle x, x \rangle + 2 \langle y, y \rangle = 2 ||x||^2 + 2 ||y||^2.$
 - (b) Do the same thing as above.
- 3. If $v \in \text{Span}\{e_1, \dots, e_m\}$, write $v = c_1e_1 + \dots + c_mv_m\}$. Then $\langle v, e_i \rangle = c_i \langle e_i, e_i \rangle = c_i \|e_i\|^2 = c_i$ since β is orthonormal. By the Pythagorean theorem, we then have $\|v\|^2 = |\langle v, e_1 \rangle|^2 + \dots + |\langle v, e_m \rangle|^2$. Conversely, suppose $\|v\|^2 = |\langle v, e_1 \rangle|^2 + \dots + |\langle v, e_m \rangle|^2$, and consider $x = v \langle v, e_1 \rangle e_1 \dots \langle v, e_m \rangle e_m$. Then $\langle x, e_i \rangle = 0$ for all i, so $\{e_1, \dots, e_m, x\}$ is an orthogonal set of vectors. By the Pythagorean theorem, we have $\|v\|^2 = \|x\|^2 + |\langle v, e_1 \rangle|^2 + \dots + |\langle v, e_m \rangle|^2$. By assumption, this says $\|x\|^2 = 0$, so that x = 0 says $v = \langle v, e_1 \rangle e_1 + \dots + \langle v, e_m \rangle e_m$, i.e. $v \in \text{Span}\{e_1, \dots, e_m\}$.