Matrix of a Linear Transformation Tim Smits

1. For each of the following vectors, find their coordinates relative to the given basis.

(a)
$$x = (1,3) \in \mathbb{R}^2, \ \beta = \{(1,1), (1,-1)\}$$

(b) $A = \begin{pmatrix} 2 & -1 \\ -1 & 5 \end{pmatrix} \in M_2(\mathbb{R}), \ \beta = \{E_{11}, E_{12} + E_{21}, E_{22}\}$
(c) $p = 4 - 3x + 3x^2 \in P_2(\mathbb{R}), \ \beta = \{1, x, \frac{3}{2}x^2 - \frac{1}{2}\}$

- 2. For each of the following linear transformations T, compute the matrix $[T]^{\gamma}_{\beta}$ relative to the listed bases.
 - (a) $T: \mathbb{R}^3 \to \mathbb{R}^3$ given by $T(\vec{x}) = \vec{v} \times \vec{x}$ where $v = (1, 1, 1), \beta = \gamma = \{e_1, e_2, e_3\}$
 - (b) $T: P_3(\mathbb{C}) \to \mathbb{C}$ given by $T(p) = p(1) 2p(0), \ \beta = \{1, x, x^2, x^3\}, \ \gamma = \{1\}$
 - (c) $T: M_2(\mathbb{R}) \to P_3(\mathbb{R})$ given by $T(\begin{pmatrix} a & b \\ c & d \end{pmatrix}) = (a+b) + (2d)x + bx^2, \beta = \{E_{11}, E_{12}, E_{21}, E_{22}\}, \gamma = \{1, x, x^2\}$
 - (d) $T: M_2(\mathbb{R}) \to M_2(\mathbb{R})$ given by $T(A) = A A^t, \ \beta = \gamma = \{E_{11}, E_{12}, E_{21}, E_{22}\}$
 - (e) $T: \mathbb{R}^2 \to \mathbb{R}^3$ given by $T(x, y) = (x y, x, 2x + y), \beta = \{(1, 2), (2, 3)\}, \gamma = \{(1, 1, 0), (0, 1, 1), (2, 2, 3)\}$
- 3. Let $T: P_2(\mathbb{R}) \to P_2(\mathbb{R})$ be given by $T(p) = p'' + xp' + (1 + x + x^2)p(1)$.
 - (a) Compute $[T]_{\beta}$ where $\beta = \{1, x, x^2\}$.
 - (b) Use part (a) to find bases for Im(T) and ker(T) (These should not be in terms of coordinates!!)
- 4. Let $T: V \to V$ satisfy $T^n = 0$, but $T^{n-1} \neq 0$, where $\dim(V) = n$. Let $v \in V$ be a vector such that $T^{n-1}(v) \neq 0$.
 - (a) Prove that $\beta = \{T^{n-1}(v), T^{n-2}(v), \dots, v\}$ is a basis for V.
 - (b) Compute $[T]_{\beta}$.
 - (c) Find a matrix $A \in M_3(\mathbb{R})$ such that $A^2 \neq 0$ but $A^3 = 0$.

Solutions

1. (a)
$$[x]_{\beta} = (2, -1)$$

(b) $[A]_{\beta} = (2, -1, 5)$
(c) $[p]_{\beta} = (5, -3, 2)$
2. (a) $[T]_{\beta} = \begin{pmatrix} 0 & -1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \end{pmatrix}$
(b) $[T]_{\beta}^{\gamma} = (-1 & 1 & 1 & 1)$
(c) $[T]_{\beta}^{\gamma} = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 2 \\ 0 & 1 & 0 & 0 \end{pmatrix}$
(d) $[T]_{\beta} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$
(e) $[T]_{\beta}^{\gamma} = \begin{pmatrix} -7/3 & -11/3 \\ 2 & 3 \\ 2/3 & 4/3 \end{pmatrix}$
3. (a) $[T]_{\beta} = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 2 & 1 \\ 1 & 1 & 3 \end{pmatrix}$

(b)
$$\operatorname{Im}(T) = \operatorname{Span}\{1 + x + x^2, 1 + 2x + x^2\}, \ker(T) = \operatorname{Span}\{-5 + 2x + x^2\}$$

4. (a) Suppose $c_1T^{n-1}(v) + \ldots + c_{n-1}T(v) + c_nv = 0$. Applying T^{n-1} to both sides shows $c_nT^{n-1}(v) = 0$, so $c_n = 0$. Applying T^{n-2} to both sides shows $c_{n-1}T^{n-1}(v) = 0$, so $c_{n-1} = 0$. Repeating this argument shows that $c_i = 0$ for all i, so β is a basis of V.

(b)
$$[T]_{\beta} = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

(c) $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$.