
Linear Combinations
Tim Smits

Unless otherwise stated, V is a vector space over an arbitrary field.

1. Show that {(1, 1, 0), (0, 1, 1), (1, 0, 1)} is a spanning set for R3.

2. Recall that a matrix A ∈ Mat2×2(R) is called symmetric if At = A, where At denotes the
transpose of A. Let Sym2(R) be the subspace of symmetric 2 × 2 matrices. Show that!"

1 0
0 0

#
,

"
0 1
1 0

#
,

"
0 0
0 1

#$
is a spanning set for Sym2(R).

3. (a) Let S1, S2 ⊂ V be subsets with S1 ⊂ S2. Show that Span(S1) ⊂ Span(S2). In particular,
if Span(S1) = V , then deduce that Span(S2) = V .

(b) Show that if {v1, v2, v3, v4} is a generating set for V , then {v1 − v2, v2 − v3, v3 − v4, v4}
is a generating set for V .

4. Let S1, S2 ⊂ V be subsets.

(a) Show that Span(S1 ∪ S2) = Span(S1) + Span(S2).

(b) Show that Span(S1 ∩ S2) ⊂ Span(S1) ∩ Span(S2).

(c) Show that equality does not necessarily hold in (b) by giving an example of S1, S2, V
where Span(S1 ∩ S2) equals Span(S1) ∩ Span(S2) and one where it does not.
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Solutions

1. Let (x, y, z) ∈ R3. We want to find real numbers a, b, c such that a(1, 1, 0) + b(0, 1, 1) +

c(1, 0, 1) = (x, y, z). This is the same as trying to solve the system of equations

%
&'

&(

a+ c = x

a+ b = y

b+ c = z

.

If you just solve the system directly, you find a = x+y−z
2 , b = −x+y+z

2 , c = x−y+z
2 . Alterna-

tively, you can show the system is consistent using your favorite method from 33A.

2. A matrix A ∈ Mat2×2(R) is symmetric if it looks like A =

"
a b
b d

#
for some a, b, d ∈ R.

Therefore, any symmetric matrix is of the form a

"
1 0
0 0

#
+ b

"
0 1
1 0

#
+ d

"
0 0
0 1

#
for some

a, b, d ∈ R, which is precisely what it says for the set in question to span Sym2(R).

3. (a) If x ∈ Span(S1), then it’s a linear combination of some vectors in S1. Since S1 ⊂ S2,
vectors in S1 are vectors in S2, so that x is a linear combination of vectors in S2. This says
that x ∈ Span(S2), so Span(S1) ⊂ Span(S2). For the particular case that Span(S1) = V ,
then V = Span(S1) ⊂ Span(S2) ⊂ V , so that V = Span(S2).

(b) Note that v3 = (v3−v4)+v4 ∈ Span(S2). This then says v2 = (v2−v3)+v3 ∈ Span(S2),
which then immediately gives v1 = (v1 − v2) + v2 ∈ Span(S2). Thus, Span(S2) contains
S1, so it contains Span(S1). The previous part then says Span(S2) = V .

4. (a) Suppose that x ∈ Span(S1∪S2). Then we can write x = c1v1+ . . .+cnvn for some ci ∈ F
and some vi ∈ S1 ∪S2. Rearrange the vectors so that v1, . . . , vk ∈ S1 and vk+1, . . . , vn ∈
S2 for some k. Then x = (c1v1 + . . . + ckvk) + (ck+1vk+1 + . . . + cnvn), where the first
term is in Span(S1) and the second in Span(S2). This says x ∈ Span(S1) + Span(S2), so
that Span(S1 ∪ S2) ⊂ Span(S1) + Span(S2).

Now let x ∈ Span(S1) + Span(S2). Then we can write x = v1 + v2 where v1 is a linear
combination of vectors in S1 and v2 is a linear combination of vectors in S2. It’s then
clear that x is a linear combination of vectors of that belong to either S1 or S2, i.e. a
linear combination of vectors in S1 ∪ S2. This says x ∈ Span(S1 ∪ S2), which proves
Span(S1 ∪ S2) = Span(S1) + Span(S2).

(b) If x ∈ Span(S1 ∩S2), write x = c1v1+ . . .+ cnvn for some ci ∈ F and vi ∈ S1 ∩S2. Then
obviously vi ∈ S1, so x ∈ Span(S1) and vi ∈ S2, so x ∈ Span(S2), which combine to say
that x ∈ Span(S1) ∩ Span(S2). Thus, Span(S1 ∩ S2) ⊂ Span(S1) ∩ Span(S2).

(c) For the first example, take S1 = {(1, 0)}, S2 = {(1, 0), (0, 1)} and V = R2, so that
Span(S1∩S2) = Span(S1)∩Span(S2) = Span{(1, 0)}. For the second example, take S1 =
{(1, 0), (1, 1)}, S2 = {(0, 1), (1, 1)} and V = R2, so that Span(S1 ∩ S2) = Span{(1, 1)}
while Span(S1) ∩ Span(S2) = R2.
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