Linear Combinations
Tim Smits

Unless otherwise stated, V' is a vector space over an arbitrary field.
1. Show that {(1,1,0),(0,1,1),(1,0,1)} is a spanning set for R3.

2. Recall that a matrix A € Matax2(R) is called symmetric if A® = A, where A! denotes the
transpose of A. Let Sym,(R) be the subspace of symmetric 2 x 2 matrices. Show that

1 0 0 1 0 0 . .
{ <O O> ) (1 O) , <0 1) } is a spanning set for Sym,(R).

3. (a) Let S1,S2 C V be subsets with S; C Se. Show that Span(S1) C Span(S2). In particular,
if Span(S;) =V, then deduce that Span(Ss) = V.

(b) Show that if {v1,ve,vs,v4} is a generating set for V', then {v; — vo,ve — v3,v3 — V4, v4}
is a generating set for V.

4. Let Sq1,52 C V be subsets.

(a) Show that Span(S; U S2) = Span(Si) + Span(Ss).
(b) Show that Span(S; NS2) C Span(S1) N Span(Sz).

(¢) Show that equality does not necessarily hold in (b) by giving an example of Sy, Ss, V
where Span(S; N S2) equals Span(S1) N Span(Ss) and one where it does not.



Solutions

1.

3.

. A matrix A € Matax2(R) is symmetric if it looks like A =

Let (x,9,2) € R®. We want to find real numbers a,b,c such that a(1,1,0) + b(0,1,1) +
atc=zx

¢(1,0,1) = (x,y, z). This is the same as trying to solve the system of equations ¢ a +b =1y
b+c=z

If you just solve the system directly, you find @ = 2H4==2 p = _x';y“,c = ”3_32""2. Alterna-

2
tively, you can show the system is consistent using your favorite method from 33A.

a

b
b d for some a,b,d € R.

Therefore, any symmetric matrix is of the form a <(1) 8) +b <(1) (1)> +d <8 (1)) for some

a,b,d € R, which is precisely what it says for the set in question to span Sym,(R).

(a) If z € Span(S;), then it’s a linear combination of some vectors in S;. Since S; C Ss,
vectors in S are vectors in So, so that z is a linear combination of vectors in S5. This says
that « € Span(Ss), so Span(S7) C Span(Ssz). For the particular case that Span(S;) =V,
then V' = Span(S;) C Span(Ss) C V, so that V' = Span(Ss).

(b) Note that v = (v3—v4)+v4 € Span(Sz). This then says va = (v2 —v3) +v3 € Span(Ss),
which then immediately gives v1 = (v; — v2) + v2 € Span(Sz). Thus, Span(S3) contains
Si, so it contains Span(S7). The previous part then says Span(Sy) = V.

(a) Suppose that x € Span(S;USs). Then we can write x = c¢jvy +. . . +¢,v, for some ¢; € F
and some v; € S1USy. Rearrange the vectors so that vy,...,vx € S; and vgyq1,...,0, €
Sy for some k. Then x = (civ1 + ... + cxvk) + (Ck41Vk4+1 + -« - + CrUp), Where the first
term is in Span(S7) and the second in Span(Sz). This says x € Span(S1) + Span(S2), so
that Span(S; U S3) C Span(S1) + Span(Ss).

Now let x € Span(S7) + Span(S3). Then we can write = v1 + vo where v is a linear
combination of vectors in S; and wvs is a linear combination of vectors in Ss. It’s then
clear that = is a linear combination of vectors of that belong to either S; or S;, i.e. a
linear combination of vectors in S; U Sy. This says & € Span(S; U S2), which proves
Span(S; U S3) = Span(S;) + Span(Sz).

(b) If z € Span(S; NSs), write x = cyvy +. . . + ¢, v, for some ¢; € F and v; € S; NSy, Then

obviously v; € S1, so x € Span(S7) and v; € S3, so x € Span(S3), which combine to say
that & € Span(S7) N Span(S,). Thus, Span(S; N .S3) C Span(S;) N Span(Ss).

(c) For the first example, take S; = {(1,0)}, S2 = {(1,0),(0,1)} and V = R?, so that
Span(S1NSz) = Span(S1)NSpan(Sz) = Span{(1,0)}. For the second example, take S; =
{(1,0),(1,1)}, S2 = {(0,1),(1,1)} and V = R?, so that Span(S; N S) = Span{(1,1)}
while Span(S;) N Span(Ss) = R2.



