
Fields
Tim Smits

*Starred problems are optional problems that relate the concepts to other areas of math.

1. Check that Q is a field by carefully verifying the field axioms.

2. Below are a list of vector spaces that you saw in lecture:

(i) R[x]

(ii) R(x)

(iii) R2

(iv) Mat2×2(R)

Each space has a natural multiplication operation, e.g. multiplication in R[x] is the usual
multiplication of polynomials, while multiplication in R2 is defined pointwise, i.e. (a, b) ·
(c, d) = (ac, bd), and so on. For each space, answer the following:

(a) Identify what the “0” and “1” element are.

(b) Is the space a field? If so, explain why (but not necessarily rigorously), and if not,
explicitly give a counter-example to one of the field axioms.

3.* Polynomial arithmetic over finite fields works as you would expect it to. E.g., the polynomial
f(x) = x2 + 2̄ ∈ F3[x] has roots at 1̄ and 2̄, because f(1̄) = f(2̄) = 0̄, so f(x) factors as
(x+ 1̄)(x+ 2̄).

Let f(x) = (x2 + 16)(x2 + 13) ∈ Fp[x], where p is one of the primes listed below. For each
choice of p, find all the roots of f(x), and factor f(x) further, if possible.

(i) p = 2

(ii) p = 3

(iii) p = 5

(iv) p = 7

4.* The polynomial x2 +1 has no real root, so is irreducible over R (meaning x2 +1 ∈ R[x] cannot
factor further). By defining a symbol i with i2 + 1 = 0, we can construct a “larger” field C
where x2 + 1 has a root, where by “larger” we mean in the sense that R ⊂ C. Below, we will
mimic the construction with a finite field instead.

(a) List all the degree 2 polynomials in F2[x], and show that x2 +x+1̄ is the only irreducible
one.

Define a symbol α with the property α2 + α + 1̄ = 0̄, and consider the set S = {a + bα :
a, b ∈ F2}. Explicitly as a set, we have S = {0̄, 1̄, α, α + 1̄}, and addition and multiplication
work similarly to that of C, except now we have the algebraic relation α2 = α+ 1̄ instead of
i2 = −1.

(b) Write down the addition and multiplication tables for S.

Your tables in (b) will show that S is a field with 4 elements, which we will now denote F4.
The complex numbers C have the property that every non-constant polynomial in C[x] has a
root in C (i.e. C is algebraically closed).
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(c) Show that F4 is not algebraically closed by explicitly finding a polynomial f(x) ∈ F4[x]
that does not have a root in F4. (Hint: look for a quadratic polynomial).

Solutions

1. We’ll take our definition of Q to be Q = {ab : a, b ∈ Z, b 6= 0} with operations given by
a
b + c

d = ad+bc
bd and a

b ·
c
d = ac

bd , where two fractions a
b and c

d are considered equal if ad = bc.

F1 Pick a
b ,

c
d ∈ Q. Then a

b + c
d = ad+bc

cd , while c
d + a

b = cb+da
db . Since the addition and

multiplication in the numerator and denominator are happening in Z and we know
addition/multiplication there is commutative, we can appropriately swap everything, so
a
b + c

d = c
d + b

a . Similarly, a
b ·

c
d = ac

bd = ca
db = c

d ·
a
b .

F2 Pick a
b ,

c
d ,

e
f ∈ Q. Then (a

b + c
d ) + e

f = ad+bc
bd + e

f = (ad+bc)f+(bd)e
(bd)f = adf+bcf+bde

bdf . On

the other hand, a
b + ( c

d + e
f ) = a

b + cf+de
df = a(df)+b(cf+de)

b(df) = adf+bcf+bde
bdf . Here we use

the fact that multiplication distributes over addition in the integers, and multiplication

of integers is associative. Similarly, we have (a
b ·

c
d ) · e

f = ac
bd ·

e
f = (ac)e

(bd)f = ace
bdf while

a
b · (

c
d ·

e
f ) = a

b ·
ce
df = a(ce)

b(df) = ace
bdf .

F3 It’s clear from the definition of addition and multiplication that 0
1 and 1

1 satisfy the
definition of the “0” and “1” element for a field, respectively.

F4 For any a
b ∈ Q, we have a

b + −a
b = ab−ba

b2 = ab−ab
b2 = 0

b2 = 0
1 , because we know what

additive inverses in the integers look like. The last equality follows from what it means
for rational numbers to be equal. If a

b 6=
0
1 , then a

b ·
b
a = ab

ba = ab
ab = 1

1 .

F5 Pick a
b ,

c
d ,

e
f ∈ Q. We have a

b · (
c
d + e

f ) = a
b ·

cf+de
df = a(cf+de)

b(df) = acf+ade
bdf because

multiplication in the integers is associative/distributes. On the other hand, a
b ·

c
d + a

b ·
e
f =

ac
bd + ae

bf = (ac)(bf)+(bd)(ae)
(bd)(bf) = b(acf+ade)

b2df = acf+ade
bdf (again, we use that multipliation in the

integers works nicely, and the last equality follows from what it means for two rational
numbers to be equal).

2. (i) R[x] is not a field, because x is not invertible. To explicitly see this, if x was invertible,
then by definition it has some multiplicative inverse, say f(x) ∈ R[x], so that xf(x) = 1.
Then plugging in x = 0 says 0 = 1, which is clearly false. (Note that 1

x is not a
polynomial, because by definition polynomials can only contain non-negative powers of
x).

(ii) R(x) is a field; the same proof that Q is a field generalizes.

(iii) R2 is not a field; (1, 0) · (0, 1) = (0, 0), so (1, 0) (also (0, 1)) is not invertible.

(iv) Mat2×2(R) is not a field. Matrix multiplication is not commutative:

(
1 0
0 0

)(
0 0
1 0

)
=(

0 0
0 0

)
, while

(
0 0
1 0

)(
1 0
0 0

)
=

(
0 0
1 0

)
. (Note that the first computation shows that

neither of these matrices have multiplicative inverses).

3. (i) Roots: 0̄, 1̄ and f(x) = x2(x+ 1̄)2.

(ii) Roots: No roots, and f(x) = (x2 + 1̄)2.

(iii) Roots: 2̄, 3̄ and f(x) = (x+ 2̄)(x+ 3̄)(x2 + 3̄).

(iv) Roots: 1̄, 6̄ and f(x) = (x+ 1̄)(x+ 6̄)(x2 + 2̄).

4. (a) x2, x2 + 1̄, x2 +x, x2 +x+ 1̄ are the four degree two polynomials of F2[x]. The first three
all have a root, while the last one does not (just plug in 0̄ and 1̄ to check).
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(b)

+ 0̄ 1̄ α α+ 1̄
0̄ 0̄ 1̄ α α+ 1̄
1̄ 1̄ 0̄ α+ 1̄ α
α α α+ 1̄ 0̄ 1̄

α+ 1̄ α+ 1̄ α 1̄ 0̄

· 0̄ 1̄ α α+ 1̄
0̄ 0̄ 0̄ 0̄ 0̄
1̄ 0̄ 1̄ α α+ 1̄
α 0̄ α α+ 1̄ 1̄

α+ 1̄ 0̄ α+ 1̄ 1̄ α

(c) Consider f(x) = x2 + x + α + 1̄. This is irreducible, because it has no root in F4: we
check f(0̄) = α+ 1̄, f(1̄) = α+ 1̄, f(α) = α and f(α+ 1̄) = α.
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