Fields
Tim Smits

*Starred problems are optional problems that relate the concepts to other areas of math.
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Check that Q is a field by carefully verifying the field axioms.
Below are a list of vector spaces that you saw in lecture:
(i) Riz]
(i) R(z)
(iii) R2
(IV) Matgxg(R)

R
R

Each space has a natural multiplication operation, e.g. multiplication in Rz] is the usual
multiplication of polynomials, while multiplication in R? is defined pointwise, i.e. (a,b) -
(¢,d) = (ac, bd), and so on. For each space, answer the following:

(a) Identify what the “0” and “1” element are.

(b) Is the space a field? If so, explain why (but not necessarily rigorously), and if not,
explicitly give a counter-example to one of the field axioms.

Polynomial arithmetic over finite fields works as you would expect it to. E.g., the polynomial
f(z) = 2® + 2 € F3z] has roots at 1 and 2, because f(1) = f(2) = 0, so f(z) factors as
(x4 1)(z+2).

Let f(z) = (22 4 16)(2? + 13) € Fp[x], where p is one of the primes listed below. For each
choice of p, find all the roots of f(z), and factor f(z) further, if possible.

(i) p=2
(ii) p=3
(iii) p=5
(iv) p=7
The polynomial 2% +1 has no real root, so is irreducible over R (meaning 2+ 1 € R[z] cannot
factor further). By defining a symbol i with 2 + 1 = 0, we can construct a “larger” field C

where 22 4 1 has a root, where by “larger” we mean in the sense that R C C. Below, we will
mimic the construction with a finite field instead.

(a) List all the degree 2 polynomials in Fo[z], and show that 2% +x +1 is the only irreducible
one.

Define a symbol a with the property a? + a + 1 = 0, and consider the set S = {a + ba :
a,b € Fo}. Explicitly as a set, we have S = {0,1,a,a + 1}, and addition and multiplication
work similarly to that of C, except now we have the algebraic relation a? = « + 1 instead of
)

1 =—1.

(b) Write down the addition and multiplication tables for S.

Your tables in (b) will show that S is a field with 4 elements, which we will now denote Fy.
The complex numbers C have the property that every non-constant polynomial in C[z] has a
root in C (i.e. C is algebraically closed).



(¢) Show that Fy is not algebraically closed by explicitly finding a polynomial f(z) € Fy[z]

that does not have a root in Fy. (Hint: look for a quadratic polynomial).

Solutions

1. We’ll take our definition of Q to be Q = {§ : a,b € Z,b # 0} with operations given by

2.

F1 Pick ¢,£ € Q. Then ¢ + £ = b while

F2

F3

F4

F5

Tte= adbfibc and § - = where two fractions § and £ are considered equal if ad = be.

bd’

7 o +7 = %. Since the addition and
multiplication in the numerator and denominator are happening in Z and we know
addition/ multiplication there is commutative, we can appropriately swap everything, so

alo

Tte= d—i—f Similarly, ¢ - £ =& =< = <. ¢

Pick £, % € Q. Then (§ + §) + § = adtbe 4 ¢ = (A 2bde _ adibpelsbde o
the other hand, § +(§+ %) = § + cf+de = (df)t(bd(;)f*de) = “df"’gz}f*‘bde. Here we use
the fact that multiplication distrlbutes over addition in the integers, and multiplication
of integers is associative. Similarly, we have (¢ - §)- ¢ = §7-F = ég;)); = gar while
2.(2.2)_2.2_@06)_@

b \d"F) T % df T b(df) T bdf-

It’s clear from the definition of addition and multiplication that % and % satisfy the
definition of the “0” and “1” element for a field, respectively.

For any § € Q, we have 7 + 5* = “bbgb“ = “bb;“b = b% = %, because we know what
additive inverses in the integers look like. The last equality follows from what it means
b ab _ ab _ 1

for rational numbers to be equal. If § # % then 7 -2 =72 =2 = 7.

Pick I;’ (ci’z € Q. We have g . (5 + %) = % . cfc-l;de _ a(céc;()ie) - acfb;fade because
multiplication in the integers is assomative /distributes. On the other hand, -5+% f

b TiF = (ac)([()g;)—tél}c)l)(ae) b(acbfngade) = ac’;);fade (again, we use that multipliation in the

integers works nicely, and the last equality follows from what it means for two rational
numbers to be equal).

(i) R[] is not a field, because z is not invertible. To explicitly see this, if z was invertible,

then by definition it has some multiplicative inverse, say f(z) € R[], so that zf(x) =
Then plugging in « = 0 says 0 = 1, which is clearly false. (Note that % is not a
polynomial, because by definition polynomials can only contain non-negative powers of

(ii) R(x) is a field; the same proof that Q is a field generalizes.
(iii) R? is not a field; (1,0) - (0,1) = (0,0), so (1,0) (also (0,1)) is not invertible.

(iv

)

Matox2(R) is not a field. Matrix multiplication is not commutative: <(1) 8) <(1) 8) =

0 0 . 0 0\ /1 O 0 0 .
(0 0), while (1 O) (0 O) = (1 0). (Note that the first computation shows that

neither of these matrices have multiplicative inverses).

Roots: 0,1 and f(z) = 2%(z + 1)2.

Roots: No roots, and f(z) = (2% + 1).

Roots: 2,3 and f(z) = (x + 2)(x + 3)(2?

Roots: 1,6 and f(z) = (x + 1)(x + 6)(x?
2

22,22+ 1,22 + 2,22 + 2+ 1 are the four degree two polynomials of Fy[x]. The first three
all have a root, while the last one does not (just plug in 0 and 1 to check).



+ 0 1 a a+1
0 0 1 «a a+1
(b) 1 1 0 a+1 a
a a a+1 0 1
a+1|a+1 a 1 0
. 0 1 a a+1
0 0 0 0 0
1 0 1 a a+1
a 0 « a+1 1
a+1]0 a+1 1 a
(c) Consider f(x) = 22 + 2 + o + 1. This is irreducible, because it has no root in Fy: we
check f(0)=a+1, f(1I)=a+1, f(a)=aand fla+1) =a.



