Dimension Tim Smits

*Starred problems are optional problems that relate the concepts to other areas of math.

- 1. For each of the following vector spaces, give an example of a basis of and state the dimension of the vector space.
 - (a) Span{(1,2,3), (4,5,6), (7,8,9)} $\subset \mathbb{R}^3$.
 - (b) The subspace $S \subset \mathbb{R}^4$ of vectors (x_1, x_2, x_3, x_4) with $x_1 + x_2 + x_3 + x_4 = 0$.
 - (c) The solution space to the system of equations $\begin{cases} x 2y + z = 0\\ 2x 3y + z = 0 \end{cases}$
 - (d) The subspace $S \subset P_3(\mathbb{R})$ of polynomials of degree at most 3 with p''(1) = 0.
 - (e) The subspace $U_n \subset \operatorname{Mat}_n(\mathbb{R})$ of upper triangular $n \times n$ matrices.
 - (f) The subspace $\operatorname{Skew}_n(\mathbb{R}) \subset \operatorname{Mat}_n(\mathbb{R})$ of skew-symmetric $n \times n$ matrices. (Recall a matrix is skew-symmetric if $A^t = -A$).
 - (g) The quotient space \mathbb{R}^2/W where $W = \text{Span}\{(1,0)\}$.
 - (h) The quotient space $\mathbb{C}[x]/W$ where $W = \text{Span}\{x^a : a > 2\}$.
- 2. Let V be a finite dimensional vector space and $U \subset V$ a subspace. Prove that dim $U \leq \dim V$, and U = V if dim $U = \dim V$. (Do not assume that U is finite dimensional you must show this as part of the proof!).
- 3.* How many subspaces of \mathbb{F}_p^2 are there? (Hint: draw a picture!)

Solutions

- 1. (a) $\{(1,2,3), (4,5,6)\}$ is a basis and the dimension is 2.
 - (b) $\{(1, -1, 0, 0), (1, 0, -1, 0), (1, 0, 0, -1)\}$ is a basis and the dimension is 3.
 - (c) $\{(1,1,1)\}$ is a basis and the dimension is 1.
 - (d) $\{1, x, x^3 3x^2\}$ is a basis and the dimension is 3.
 - (e) $\{E_{ij}: 1 \le i \le j \le n\}$ where $E_{ij} = 1$ in the (i, j)-th entry. The dimension is $(n^2 + n)/2$.
 - (f) $\{E_{ij} E_{ji} : 1 \le i < j \le n\}$ is a basis and the dimension is $(n^2 n)/2$.
 - (g) $\{(0,1)+W\}$ is a basis and the dimension is 1.
 - (h) $\{1 + W, x + W, x^2 + W\}$ is a basis and the dimension is 3.
- 2. First we show that U is finite dimensional. If $U = \{0\}$ we're done. Otherwise, pick $u_1 \in U \neq 0$. Then if $U = \text{Span}\{u_1\}$ we're done, otherwise there is $u_2 \in U$ with $w_2 \notin \text{Span}\{u_1\}$ so $\{u_1, u_2\}$ is linearly independent. Repeating this process, at the k-th step we produce u_1, \ldots, u_k linearly independent with $U = \text{Span}\{u_1, \ldots, u_k\}$. This process must eventually stop, because a linearly independent set in U is linearly independent in V, and the maximal size of a linearly independent set is $\dim(V) < \infty$. Thus, there are at most $\dim(V)$ steps in this process so $\dim(U) \leq \dim(V)$ as desired. If the process stops with $\dim(V)$ vectors, we have a linearly independent subset of $\dim(V)$ size, so it's a basis of V. This says U = V.
- 3. \mathbb{F}_p^2 is a two dimensional vector space over \mathbb{F}_p . Therefore by the previous problem, the possible dimensions of a subspace are 0, 1, 2. The zero subspace is the only zero dimensional subspace, and \mathbb{F}_p^2 is the only two dimensional subspace. Therefore, we need to count the number of one dimensional subspaces. Such a subspace looks like $\text{Span}\{v\}$ for some non-zero $v \in \mathbb{F}_p^2$. There are a total of $p^2 1$ such vectors, and each of the p 1 non-zero multiples of v span the same subspace. This gives $(p^2 1)/(p 1) = p + 1$ total one dimensional subspaces, for a total of p + 3.