Change of Basis Tim Smits

- 1. The majority of our example computations have been concerned with changing to or from a "nice" basis of some vector space. What do you do when you want to change between to bases that are not "nice"?
 - (a) Let V be a vector space, and let $\beta, \gamma, \mathcal{E}$ be bases of V. Prove that $S^{\gamma}_{\beta} = S^{\gamma}_{\mathcal{E}} S^{\mathcal{E}}_{\beta}$.

Use this idea to compute the change of basis matrix S^{γ}_{β} for each of the following:

- (b) $V = \mathbb{R}^2, \beta = \{(1,1), (1,3)\}, \gamma = \{(2,1), (-1,2)\}$
- (c) $V = P_2(\mathbb{R}), \beta = \{x^2 x, x^2 + 1, x 1\}, \gamma = \{5x^2 2x 3, -2x^2 + 5x + 5, 2x^2 x 3\}$
- 2. Let $T: P_2(\mathbb{R}) \to P_2(\mathbb{R})$ be given by $T(p) = x^2 p'' + xp' + p$. Let $\beta = \{1, x, x^2\}$ be the standard basis and $\gamma = \{x^2 + x + 1, x^2 + x, x^2\}$.
 - (a) Compute $[T]_{\gamma}$.
 - (b) Compute the change of basis matrix S^{γ}_{β} , and compute $[p(x)]_{\gamma}$ for $p(x) = 5x^2 2x + 3$. Use this to write p(x) as a linear combination of vectors in γ .
 - (c) Use the change of basis formula to compute $[T]_{\beta}$.
 - (d) Is T an isomorphism? Justify your answer.
- 3. The change of basis proceedure still works for arbitrary linear maps $T: V \to W$. Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be given by T(x, y, z) = (y + 2z, 3x + 4y + 5z) and let $\beta = \{e_1, e_2, e_3\}$ and $\gamma = \{f_1, f_2\}$ be the standard bases of \mathbb{R}^3 and \mathbb{R}^2 . Let $\beta' = \{(1, 0, 0), (1, 1, 0), (1, 1, 1)\}$ and $\gamma' = \{(1, 0), (1, 1)\}$ be other bases of \mathbb{R}^3 and \mathbb{R}^2 respectively.
 - (a) Write down the change of basis matrix $S_{\beta}^{\beta'}$.
 - (b) Write down the change of basis matrix $S_{\gamma}^{\gamma'}$.
 - (c) Write down the change of basis diagram relating $[T]^{\gamma}_{\beta}$ and $[T]^{\gamma'}_{\beta'}$. (This should only require a slight modification of the one we've been drawing!)
 - (d) Use your picture to compute $[T]_{\beta'}^{\gamma'}$.

Solutions

1. (a) Let $\beta = \{v_1, \ldots, v_n\}$. Then $[v_i]_{\gamma} = S^{\gamma}_{\beta}[v_i]_{\beta}$ is the *i*-th column of S^{γ}_{β} . On the other hand, the *i*-th column of $S^{\gamma}_{\mathcal{E}}S^{\mathcal{E}}_{\beta}$ is given by $(S^{\gamma}_{\mathcal{E}}S^{\mathcal{E}}_{\beta})[v_i]_{\beta} = S^{\gamma}_{\mathcal{E}}[v_i]_{\mathcal{E}} = [v_i]_{\gamma}$, so these matrices are equal.

(b)
$$S_{\beta}^{\gamma} = \frac{1}{5} \begin{pmatrix} 3 & 5 \\ 1 & 5 \end{pmatrix}$$
.
(c) $S_{\beta}^{\gamma} = \frac{1}{36} \begin{pmatrix} 12 & 16 & -8 \\ 0 & 9 & 0 \\ -12 & -13 & 20 \end{pmatrix}$.

For both of these, take ${\mathcal E}$ to be the standard basis.

2. (a)
$$[T]_{\gamma} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ 3 & 3 & 5 \end{pmatrix}$$
.
(b) $S_{\beta}^{\gamma} = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix}$ and $[p(x)]_{\gamma} = S_{\beta}^{\gamma}[p(x)]_{\beta} = (3, -5, 7)$. This says $p(x) = 3(x^2 + x + 1) - 5(x^2 + x) + 7x^2$.
(c) $S_{\gamma}^{\beta} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$, so $[T]_{\beta} = S_{\gamma}^{\beta}[T]_{\gamma}S_{\beta}^{\gamma} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 5 \end{pmatrix}$.

(d) Many ways to see this; for example, $det([T]_{\gamma}) \neq 0$, so T is an isomorphism.

3. (a)
$$S_{\beta}^{\beta'} = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$
.
(b) $S_{\gamma}^{\gamma'} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$.
 $\begin{bmatrix} x \end{bmatrix}_{\beta} \xrightarrow{[T]_{\beta}^{\gamma}} [T(x)]_{\gamma}$
(c) $\downarrow S_{\beta}^{\beta'} \qquad \downarrow S_{\gamma}^{\gamma'} \\ \begin{bmatrix} x \end{bmatrix}_{\beta'} \xrightarrow{[T]_{\beta'}^{\gamma'}} [T(x)]_{\gamma'}$
(c) $\downarrow c$

(d) From the diagram, $[T]_{\beta'}^{\gamma'} = S_{\gamma}^{\gamma'} [T]_{\beta}^{\gamma} S_{\beta'}^{\beta}$. We have $[T]_{\beta}^{\gamma} = \begin{pmatrix} 0 & 1 & 2 \\ 3 & 4 & 5 \end{pmatrix}$, so $[T]_{\beta'}^{\gamma'} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 2 \\ 3 & 4 & 5 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} -3 & -6 & -9 \\ 3 & 7 & 12 \end{pmatrix}$.