Adjoint Operators Tim Smits

- 1. Let V be an inner product space, and let $u, v \in V$ be fixed. Define $T: V \to V$ by $T(x) = \langle x, u \rangle v$. Compute $T^*(y)$ for any $y \in V$.
- 2. Let $V = P_2(\mathbb{R})$ with the inner product $\langle p, q \rangle = \int_{-1}^1 p(t)q(t) \, dt$ and let $T: V \to V$ be defined by $T(p) = -2xp' + (1-x^2)p''$. (Feel free to use WolframAlpha to avoid doing computations by hand.)
 - (a) Let $\mathcal{E} = \{1, x, x^2\}$ be the standard basis of V. Perform Gram-Schmidt on \mathcal{E} to get an orthonormal basis β of V.
 - (b) Compute $[T^*]_{\beta}$
 - (c) Compute $T^*(1 x + x^2)$
- 3. Let V be an inner product space and $S,T:V\to V$ a linear operator with adjoints S^*,T^* . Prove the following:
 - (a) $(S+T)^* = S^* + T^*$
 - (b) $(aT)^* = \bar{a}T^*$ for $a \in F$
 - (c) $(TS)^* = S^*T^*$
 - (d) $(T^*)^* = T$

Solutions

- 1. For any $x, y \in V$, we have $\langle T(x), y \rangle = \langle x, T^*(y) \rangle$ by definition of T^* . Since $T(x) = \langle x, u \rangle v$, this says $\langle x, T^*(y) \rangle = \langle \langle x, u \rangle v, y \rangle = \langle x, u \rangle \langle v, y \rangle = \langle x, \langle y, v \rangle u \rangle$. This says $T^*(y) = \langle y, v \rangle u$.
- 2. (a) $\beta = \{\frac{1}{\sqrt{2}}, \sqrt{\frac{3}{2}}x, \sqrt{\frac{5}{8}}(3x^2 1)\}$. See the inner product handout for the computation.

(b)
$$[T^*]_{\beta} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -6 \end{pmatrix}$$

- (c) With $p(x) = 1 x + x^2$, we have $[p]_{\beta} = (\frac{4\sqrt{2}}{3}, -\sqrt{\frac{2}{3}}, \frac{2}{3}\sqrt{\frac{2}{5}})$, so $[T^*(p)]_{\beta} = [T^*]_{\beta}[p]_{\beta} = (0, 2\sqrt{\frac{2}{3}}, -4\sqrt{\frac{2}{5}})$, so that $T^*(p) = 2\sqrt{\frac{2}{3}}\sqrt{\frac{3}{2}}x 4\sqrt{\frac{2}{5}}\sqrt{\frac{5}{8}}(3x^2 1) = 2x 2(3x^2 1) = 2 + 2x 6x^2$.
- 3. (a) For any $x,y \in V$, we have $\langle x,(S+T)^*(y)\rangle = \langle (S+T)(x),y\rangle = \langle S(x),y\rangle + \langle T(x),y\rangle = \langle x,S^*(y)\rangle + \langle x,T^*(y)\rangle = \langle x,S^*(y)+T^*(y)\rangle$. This says that $(S+T)^*=S^*+T^*$.
 - (b) For any $x, y \in V$ we have $\langle x, (aT)^*(y) \rangle = \langle (aT)(x), y \rangle = a \langle T(x), y \rangle = a \langle x, T^*(y) \rangle = \langle x, \overline{a}T^*(y) \rangle$, so that $(aT)^* = \overline{a}T^*$.
 - (c) For any $x, y \in V$, we have $\langle x, (TS)^*(y) \rangle = \langle (TS)(x), y \rangle = \langle T(S(x)), y \rangle = \langle S(x), T^*(y) \rangle = \langle x, S^*(T^*(y)) \rangle = \langle x, (S^*T^*)(y) \rangle$. This says that $(TS)^* = S^*T^*$.
 - (d) For any $x, y \in V$, we have $\langle x, (T^*)^*(y) \rangle = \langle T^*(x), y \rangle = \overline{\langle y, T^*(x) \rangle} = \overline{\langle T(y), x \rangle} = \langle x, T(y) \rangle$, so that $(T^*)^* = T$.